On the Usage of TGGs for Automated Model Transformation Testing

  • Martin Wieber
  • Anthony Anjorin
  • Andy Schürr
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8568)


As model transformations are fundamental to model-driven engineering, assuring their quality is a central task which can be achieved by testing with sufficiently adequate and large test suites. As the latter requirement can render manual testing prohibitively costly in practice, a high level of automation is advisable. Triple Graph Grammars (TGGs) have been shown to provide a promising solution to this challenge as not only test case generators, but also generic test oracles can be derived from them. It is, however, unclear if such generated test suites are indeed adequate and, as different strategies can be used to steer the test generation process, a systematic means of comparing and evaluating such test suites and strategies is required.

In this paper, we extend existing work on TGG-based testing by(i) presenting a generic framework for TGG-based testing, (ii) describing a concrete instantiation of this framework with our TGG tool eMoflon, and (iii) exploring how the well-known technique of mutation analysis can be used to evaluate a set of test generation strategies by analyzing the generated test suites.


Model Transformation Test Suite System Under Test Graph Grammar Eclipse Modelling Framework 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: On challenges of model transformation from UML to Alloy. SoSyM 9(1), 69–86 (2010)Google Scholar
  2. 2.
    Anjorin, A., Schürr, A., Taentzer, G.: Construction of Integrity Preserving Triple Graph Grammars. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2012. LNCS, vol. 7562, pp. 356–370. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Anjorin, A., Varró, G., Schürr, A.: Complex Attribute Manipulation in TGGs with Constraint-Based Programming Techniques. In: Proc. Workshop on BX 2012. ECEASST, vol. 49, EASST (2012)Google Scholar
  4. 4.
    Baudry, B., Dinh-Trong, T., Mottu, J.M., Simmonds, D., France, R., Ghosh, S., Fleurey, F., Le Traon, Y.: Model Transformation Testing Challenges. In: Proc. IMDT Workshop 2006, Bilbao, Spain (2006)Google Scholar
  5. 5.
    Benavides, D., Segura, S., Ruiz-Cortés, A.: Automated analysis of feature models 20 years later: A literature review. Information Systems 35(6), 615–636 (2010)CrossRefGoogle Scholar
  6. 6.
    Cabot, J., Clarisó, R., Riera, D.: UMLtoCSP: A tool for the formal verification of UML/OCL models using constraint programming. In: Proc. ASE 2007, pp. 547–548. ACM (2007)Google Scholar
  7. 7.
    Czarnecki, K., Helsen, S.: Feature-based survey of model transformation approaches. IBM Syst. J. 45(3), 621–645 (2006)CrossRefGoogle Scholar
  8. 8.
    DeMillo, R., Lipton, R., Sayward, F.: Hints on Test Data Selection: Help for the Practicing Programmer. Computer 11(4), 34–41 (1978)CrossRefGoogle Scholar
  9. 9.
    Ehrig, K., Küster, J.M., Taentzer, G.: Generating instance models from meta models. SoSyM 8(4), 479–500 (2009)Google Scholar
  10. 10.
    Fürst, L., Mernik, M., Mahnič, V.: Converting metamodels to graph grammars: doing without advanced graph grammar features. SoSyM, 1–21 (2013)Google Scholar
  11. 11.
    Ganov, S., Khurshid, S., Perry, D.E.: Annotations for Alloy: Automated Incremental Analysis Using Domain Specific Solvers. In: Aoki, T., Taguchi, K. (eds.) ICFEM 2012. LNCS, vol. 7635, pp. 414–429. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Gogolla, M., Bohling, J., Richters, M.: Validating UML and OCL models in USE by automatic snapshot generation. SoSyM 4(4), 386–398 (2005)Google Scholar
  13. 13.
    Gonzalez, C., Buttner, F., Clariso, R., Cabot, J.: EMFtoCSP: A tool for the lightweight verification of EMF models. In: Proc. FormSERA 2012, pp. 44–50 (2012)Google Scholar
  14. 14.
    Guerra, E., Lara, J., Wimmer, M., Kappel, G., Kusel, A., Retschitzegger, W., Schönböck, J., Schwinger, W.: Automated verification of model transformations based on visual contracts. Autom. Softw. Eng. 20(1), 5–46 (2013)CrossRefGoogle Scholar
  15. 15.
    Guerra, E., Soeken, M.: Specification-driven model transformation testing. SoSyM, 1–22 (2013)Google Scholar
  16. 16.
    Hennessy, M., Power, J.F.: An analysis of rule coverage as a criterion in generating minimal test suites for grammar-based software. In: Proc. ASE 2005, pp. 104–113. ACM (2005)Google Scholar
  17. 17.
    Hildebrandt, S., Lambers, L., Giese, H.: Complete Specification Coverage in Automatically Generated Conformance Test Cases for TGG Implementations. In: Duddy, K., Kappel, G. (eds.) ICMT 2013. LNCS, vol. 7909, pp. 174–188. Springer, Heidelberg (2013)Google Scholar
  18. 18.
    Hildebrandt, S., Lambers, L., Giese, H., Petrick, D., Richter, I.: Automatic Conformance Testing of Optimized Triple Graph Grammar Implementations. In: Schürr, A., Varró, D., Varró, G. (eds.) AGTIVE 2011. LNCS, vol. 7233, pp. 238–253. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  19. 19.
    Hildebrandt, S., Lambers, L., Giese, H., Rieke, J., Greenyer, J., Schäfer, W., Lauder, M., Anjorin, A., Schürr, A.: A Survey of Triple Graph Grammar Tools. In: Proc. Workshop on BX 2013 (2013) accepted for publ. (to appear)Google Scholar
  20. 20.
    Kossatchev, A., Posypkin, M.: Survey of Compiler Testing Methods. Program. and Comp. Softw. 31(1), 10–19 (2005)CrossRefGoogle Scholar
  21. 21.
    Lämmel, R.: Grammar Testing. In: Hussmann, H. (ed.) FASE 2001. LNCS, vol. 2029, pp. 201–216. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  22. 22.
    Mottu, J.M., Baudry, B., Le Traon, Y.: Model transformation testing: Oracle issue. In: Proc. the ICSTW 2008, pp. 105–112 (2008)Google Scholar
  23. 23.
    Mottu, J.M., Sen, S., Tisi, M., Cabot, J.: Static Analysis of Model Transformations for Effective Test Generation. In: Proc. ISSRE 2012, pp. 291–300 (2012)Google Scholar
  24. 24.
    Mottu, J.-M., Baudry, B., Le Traon, Y.: Mutation Analysis Testing for Model Transformations. In: Rensink, A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 376–390. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  25. 25.
    Purdom, P.: A sentence generator for testing parsers. BIT Numerical Mathematics 12(3), 366–375 (1972)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Schürr, A.: Specification of Graph Translators with Triple Graph Grammars. In: Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) Graph-Theoretic Concepts in Computer Science. LNCS, vol. 903, pp. 151–163. Springer, Heidelberg (1995)Google Scholar
  27. 27.
    Stevens, P.: A Landscape of Bidirectional Model Transformations. In: Lämmel, R., Visser, J., Saraiva, J. (eds.) Generative and Transformational Techniques in Software Engineering II. LNCS, vol. 5235, pp. 408–424. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  28. 28.
    Taentzer, G.: Instance Generation from Type Graphs with Arbitrary Multiplicities. In: Proc. GT-VMT 2012. ECEASST, vol. 47, EASST (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Martin Wieber
    • 1
  • Anthony Anjorin
    • 1
  • Andy Schürr
    • 1
  1. 1.Real-Time Systems LabTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations