Skip to main content

Parameterized Complexity of Edge Interdiction Problems

  • Conference paper
Computing and Combinatorics (COCOON 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8591))

Included in the following conference series:

Abstract

For an optimization problem on edge-weighted graphs, the corresponding interdiction problem can be formulated as a game consisting of two players, namely, an interdictor and an evader, who compete on an objective with opposing interests. In an edge interdiction problem, every edge of the input graph is associated with an interdiction cost. The interdictor interdicts the graph by modifying the edges in the graph and the number of such modifications is bounded by the interdictor’s budget. The evader then solves the given optimization problem on the modified graph. The action of the interdictor must impede the evader as much as possible.

We study the parameterized complexity of edge interdiction problems related to minimum spanning tree, maximum matching, maximum flow and minimum maximal matching problems. These problems arise in different real world scenarios. We derive several fixed-parameter tractability and W[1]-hardness results for these interdiction problems with respect to various parameters. Hereby, we reveal close relation between edge interdiction problems and partial covering problems on bipartite graphs.

Supported by the DFG Excellence Cluster MMCI and the DFG research project DARE GU 1023/1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amini, O., Fomin, F.V., Saurabh, S.: Implicit branching and parameterized partial cover problems. J. Comput. Syst. Sci. 77(6), 1159–1171 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arora, S., Karakostas, G.: A 2 + ε approximation algorithm for the k-mst problem. Math. Program. 107(3), 491–504 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Assimakopoulos, N.: A network interdiction model for hospital infection control. Bio. Med. 17(6), 413–422 (1987)

    MathSciNet  Google Scholar 

  4. Bar-Yehuda, R.: Using homogeneous weights for approximating the partial cover problem. J. Algorithms 39(2), 137–144 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Burch, C., Carr, R., Krumke, S., Marathe, M., Phillips, C., Sundberg, E.: A decomposition-based pseudoapproximation algorithm for network flow inhibition. Network Interdiction and Stochastic Integer Programming 22, 51–68 (2003)

    Article  MathSciNet  Google Scholar 

  6. Dinitz, M., Gupta, A.: Packing interdiction and partial covering problems. In: Goemans, M., Correa, J. (eds.) IPCO 2013. LNCS, vol. 7801, pp. 157–168. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  7. Downey, R.G., Estivill-Castro, V., Fellows, M.R., Prieto, E., Rosamond, F.A.: Cutting up is hard to do: The parameterized complexity of k-cut and related problems. Electr. Notes Theor. Comput. Sci. 78, 209–222 (2003)

    Article  Google Scholar 

  8. Fomin, F.V., Lokshtanov, D., Raman, V., Saurabh, S.: Subexponential algorithms for partial cover problems. Inf. Process. Lett. 111(16), 814–818 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. Forcade, R.: Smallest maximal matching in the graph of the d-dimensional cube. J. Combinatorial Theory Ser. B 14(14), 153–156 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  10. Frederickson, G.N., Solis-Oba, R.: Increasing the weight of minimum spanning trees. J. Algorithms 33(2), 244–266 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Guo, J., Niedermeier, R., Wernicke, S.: Parameterized complexity of generalized vertex cover problems. In: Dehne, F., López-Ortiz, A., Sack, J.-R. (eds.) WADS 2005. LNCS, vol. 3608, pp. 36–48. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Hsu, W.-L., Ma, T.-H.: Substitution decomposition on chordal graphs and applications. In: Hsu, W.-L., Lee, R.C.T. (eds.) ISA 1991. LNCS, vol. 557, pp. 52–60. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  13. Kawarabayashi, K., Thorup, M.: The minimum k-way cut of bounded size is fixed-parameter tractable. In: FOCS, pp. 160–169 (2011)

    Google Scholar 

  14. Liang, W.: Finding the k most vital edges with respect to minimum spanning trees for fixed k. Discrete Applied Mathematics 113(2-3), 319–327 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Liang, W., Shen, X.: Finding the k most vital edges in the minimum spanning tree problem. Parallel Computing 23(13), 1889–1907 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  16. Niedermeier, R.: Invitation to Fixed Parameter Algorithms. Oxford Lecture Series in Mathematics and Its Applications. Oxford University Press, USA (2006)

    Book  MATH  Google Scholar 

  17. Pan, F., Schild, A.: Interdiction problems on planar graphs. In: Raghavendra, P., Raskhodnikova, S., Jansen, K., Rolim, J.D.P. (eds.) APPROX/RANDOM 2013. LNCS, vol. 8096, pp. 317–331. Springer, Heidelberg (2013)

    Google Scholar 

  18. Phillips, C.A.: The network inhibition problem. In: Proceedings of the Twenty-fifth Annual ACM Symposium on Theory of Computing, STOC 1993, pp. 776–785. ACM, New York (1993)

    Chapter  Google Scholar 

  19. Salmeron, J., Wood, K., Baldick, R.: Worst-case interdiction analysis of large-scale electric power grids. IEEE Transactions on Power Systems 24(1), 96–104 (2009)

    Article  Google Scholar 

  20. Washburn, A., Wood, R.K.: Two-person zero-sum games for network interdiction 43(2), 243–251 (1995)

    Google Scholar 

  21. Wood, R.K.: Optimal interdiction policy for a flow network 18, 37–45 (1971)

    Google Scholar 

  22. Wood, R.K.: Deterministic network interdiction 17(2), 1–18 (1993)

    Google Scholar 

  23. Yannakakis, M., Gavril, F.: Edge dominating sets in graphs. SIAM J. Appl. Math. 38(3), 364–372 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  24. Zenklusen, R.: Matching interdiction. CoRR, abs/0804.3583 (2008)

    Google Scholar 

  25. Zenklusen, R.: Matching interdiction. Discrete Applied Mathematics 158(15), 1676–1690 (2010)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Guo, J., Shrestha, Y.R. (2014). Parameterized Complexity of Edge Interdiction Problems. In: Cai, Z., Zelikovsky, A., Bourgeois, A. (eds) Computing and Combinatorics. COCOON 2014. Lecture Notes in Computer Science, vol 8591. Springer, Cham. https://doi.org/10.1007/978-3-319-08783-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08783-2_15

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08782-5

  • Online ISBN: 978-3-319-08783-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics