Skip to main content

Applications

  • Chapter
  • First Online:
Digital Pathology

Part of the book series: SpringerBriefs in Computer Science ((BRIEFSCOMPUTER))

  • 1196 Accesses

Abstract

Despite the diverse appearances and usage scenarios, digital pathology applications can nevertheless be categorized into a number of distinct topics and fields. In this chapter, we start with the most obvious of these applications and move toward the least obvious. We limit ourselves to explaining the field of applications here. In practice, applied digital pathology most likely involves a combination of applications, as can be seen in Chap. 5, where we highlight certain specific use cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huisman, A.: Digital pathology for education. Stud. Health Technol. Inform. 179, 68–71 (2012)

    Google Scholar 

  2. El Saghir, N.S., Keating, N.L., Carlson, R.W., Khoury, K.E., Fallowfield, L.: Tumor boards: optimizing the structure and improving efficiency of multidisciplinary management of patients with cancer worldwide. Am. Soc. Clin. Oncol. Educ. Book 34, e461–e466 (2014)

    Google Scholar 

  3. Bell, D.F. Jr.: The tumor board and tumor clinic at the children’s hospital, Washington, D.C. Clin. Proc. Child. Hosp. Dist. Columbia 8, 21–23 (1952)

    Google Scholar 

  4. Shah, S., Arora, S., Atkin, G., et al.: Decision-making in colorectal cancer tumor board meetings: results of a prospective observational assessment. Surg. Endosc. 1–6 (2014) [Epub ahead of print]

    Google Scholar 

  5. Marshall, C.L., Petersen, N.J., Naik, A.D., et al.: Implementation of a regional virtual tumor board: a prospective study evaluating feasibility and provider acceptance. Telemed. J. E Health. (2014) [Epub ahead of print]

    Google Scholar 

  6. Marquardt, J.U., Thorgeirsson, S.S.: Next-generation genomic profiling of hepatocellular adenomas: a new era of individualized patient care. Cancer Cell 25, 409–411 (2014)

    Google Scholar 

  7. Harbour, J.W., Chen, R.: The decisionDx-UM gene expression profile test provides risk stratification and individualized patient care in Uveal Melanoma. PLoS Curr. (2013) Apr 9; 5. pii:ecurrents.eogt.af8ba80fc776c8f1ce8f5dc485d4a618. doi:10.1371/currents.eogt.af8ba80fc776c8f1ce8f5dc485d4a618

  8. Vuong, D., Simpson, P.T., Green, B., Cummings, M.C., Lakhani, S.R.: Molecular classification of breast cancer. Virchows Arch. (2014) [Epub ahead of print]

    Google Scholar 

  9. Roundtable on Translating Genomic-Based Research for Health, Board on Health Sciences Policy, and Institute of Medicine. Refining processes for the co-development of genome-based therapeutics and companion diagnostic tests: Workshop summary. National Academies Press (US), Washington (DC). The National Academies Collection: Reports funded by National Institutes of Health (2014)

    Google Scholar 

  10. Slodowska, J., Garcia-Rojo, M.: Digital pathology in personalized cancer therapy. Stud. Health Technol. Inform. 179, 143–154 (2012)

    Google Scholar 

  11. Hawkins, A.K.: Biobanks: importance, implications and opportunities for genetic counselors. J. Genet. Couns. 19, 423–429 (2010)

    Google Scholar 

  12. Brand, A.M., Probst-Hensch, N.M.: Biobanking for epidemiological research and public health. Pathobiology 74, 227–238 (2007)

    Google Scholar 

  13. Erichsen, R., Lash, T.L., Hamilton-Dutoit, S.J., et al.: Existing data sources for clinical epidemiology: the Danish National Pathology Registry and Data Bank. Clin. Epidemiol. 2, 51–56 (2010)

    Google Scholar 

  14. Forsti, A., Hemmenki, K.: Breast cancer genomics based on biobanks. Methods Mol Biol. 675, 375–385 (2011)

    Google Scholar 

  15. Hewitt, R., Hainaut, P.: Biobanking in a fast moving world: an international perspective. J. Natl. Cancer Inst. Monogr. 2011, 50–51 (2011)

    Google Scholar 

  16. Marodin, G., Salgueiro, J.B., Motta Mda, L., Santos, L.M.: Brazilian guidelines for biorepositories and biobanks of human biological material. Rev. Assoc. Med. Bras. 59, 72–77 (2013) [Article in English, Portuguese]

    Google Scholar 

  17. Caenazzo, L., Tozzo, P., Pegoraro, R.: Biobanking research on oncological residual material: a framework between the rights of the individual and the interest of society. BMC Med. Ethics 14, 17 (2013)

    Article  Google Scholar 

  18. Auray-Blais, C., Patenaude, J.: A biobank management model applicable to biomedical research. BMC Med. Ethics 7, E4 (2006)

    Article  Google Scholar 

  19. Mitchell, R.: National biobanks: clinical labor, risk production, and the creation of biovalue. Sci. Technol. Human Values 35, 330–355 (2010)

    Article  Google Scholar 

  20. Anderlik, M.: Commercial biobanks and genetic research: ethical and legal issues. Am. J. Pharmacogenomics, 3, 203–215 (2003)

    Google Scholar 

  21. Kang, B., Park, J., Cho, S., et al.: Current status, challenges, policies, and bioethics of biobanks. Genomics Inform. 11, 211–217 (2013)

    Article  Google Scholar 

  22. Garcia Rojo, M.: State of the art and trends for digital pathology. Stud. Health Technol. Inform. 179, 15–28 (2012)

    Google Scholar 

  23. Song, Y., Treanor, D., Bulpitt, A.J., Magee, D.R.: 3D reconstruction of multiple stained histology images. J. Pathol. Inform. 4, S7 (2013)

    Google Scholar 

  24. Wells, C.A., Sowter, C.: Telepathology: a diagnostic tool for the millennium? J. Pathol. 191, 1–7 (2000)

    Article  Google Scholar 

  25. Coleman, R.: Can histology and pathology be taught without microscopes? The advantages and disadvantages of virtual histology. Acta Histochem. 111, 1–4 (2009)

    Article  Google Scholar 

  26. nPOD: Developing a tissue Biobank for T1D. Juvenile Diabetes Research Foundation (JDRF) (2014)

    Google Scholar 

  27. Campbell-Thompson, M., Wasserfall, C., Kaddis, J., et al.: Network for pancreatic organ donors with diabetes (nPOD): developing a tissue biobank for type 1 diabetes. Diabetes Metab. Res. Rev. 28, 608–617 (2012)

    Article  Google Scholar 

  28. Medical Devices: U.S. Food and Drug Administration (2014)

    Google Scholar 

  29. CFR—Code of Federal Regulations Title 21: U.S. Food and Drug Administration (2014)

    Google Scholar 

  30. Evans, A.J.: Whole slide imaging for primary diagnosis: a comprehensive concordance study in genitourinary pathology [slide presentation] (2014)

    Google Scholar 

  31. Tetu, B., Evans, A.: Canadian licensure for the use of digital pathology for routine diagnoses: one more step toward a new era of pathology practice without borders. Arch. Pathol. Lab. Med. 138, 302–304 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Sucaet .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Sucaet, Y., Waelput, W. (2014). Applications. In: Digital Pathology. SpringerBriefs in Computer Science. Springer, Cham. https://doi.org/10.1007/978-3-319-08780-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08780-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08779-5

  • Online ISBN: 978-3-319-08780-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics