Skip to main content

Magnetocaloric Fluids

  • Chapter
  • First Online:
Book cover Magnetocaloric Energy Conversion

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Magnetocaloric fluids represent a class of magnetic fluids that can generally be subdivided into two main categories, i.e. ferrofluids (FF) (or magnetic nanofluids) and magnetorheological (MR) fluids. The general characteristic of these fluids is that they change their physical properties when exposed to an external magnetic field. Ferrofluids are suspensions of magnetic nanoparticles dispersed in certain base liquids. Magnetorheological fluids are particle suspensions of micron-sized particles consisting of a magnetic material dispersed in a carrier liquid. The size difference between the particles in ferrofluids and the particles in magnetorheological fluids results in the most important differences concerning the properties and the behaviour of these fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Einstein A (1906) Eine neue Bestimmung der Moleküldimensionen. Ann Physik 19(2):289–306

    MATH  Google Scholar 

  2. Einstein A (1911) Berichtigung. Ann Phys 34:591–592

    MATH  Google Scholar 

  3. Mooney M (1931) Explicit formulas for slip and fluidity. J Rheol 2:210–215

    Google Scholar 

  4. Rabinowitsch B (1929) Über die Elastizität von Solen. Z Phys Chem A 145:1–7

    Google Scholar 

  5. Kitanovski A, Vuarnoz D, Ata-Caesar D et al (2005) The fluid dynamics of ice slurry. Int J Refrig 28(1):37–50

    Google Scholar 

  6. Kitanovski A, Poredoš A (2002) Concentration distribution and viscosity of ice-slurry in heterogeneous flow. Int J Refrig 25:827–835

    Google Scholar 

  7. Rosensweig RE (1985) Ferrohydrodynamics. Cambridge University Press, New York

    Google Scholar 

  8. Blums E, Cebers A, Mayorov MM (1997) Magnetic fluids. Walter de Gruyters, Berlin

    Google Scholar 

  9. Odenbach S (2006) Ferrofluids. In: Buschow KHJ (ed) Handbook of magnetic materials, vol 16. Elsevier, Amsterdam, pp 127–208

    Google Scholar 

  10. Anton I, De Sabata L, Vekas J (1990) Application orientated researches on magnetic fluids. Magn Magn Mater 85:219–226

    Google Scholar 

  11. Vékás L (2008) Ferrofluids and magnetorheological fluids. Adv Sci Tech 54:127–136

    Google Scholar 

  12. Bossis G, Volkova O, Lacis S et al (2002) Magnetorheology: fluids, structures and rheology. In: Odenbach S (ed) Ferrofluids: magnetically controllable fluids and their applications, vol 594. Lecture notes in physics. Springer, Heidelberg, pp 202–230

    Google Scholar 

  13. Shulman ZP, Kordonsky VI, Zaltsgendler EA et al (1986) Structure, physical properties and dynamics of magnetorheological suspensions. Int J Multiph Flow 12(6):935–955

    Google Scholar 

  14. Carlson JD, Jolly MR (2000) MR fluid, foam and elastomer devices. Mechatronics 10(4):555–569

    Google Scholar 

  15. Rosensweig RE (2006) Refrigeration aspects of magnetic particle suspensions. Int J Refrig 29:1250–1258

    Google Scholar 

  16. López-López MT, Gómez-Ramírez A, Rodríguez-Arco L et al (2012) Colloids on the frontier of ferrofluids. Rheological properties. Langmuir 28:6232–6245

    Google Scholar 

  17. Genc S, Derin B (2014) Synthesis and rheology of ferrofluids: a review. Curr Opin Chem Eng 3:118–124

    Google Scholar 

  18. Odenbach S (2002) Magnetoviscous effect in ferrofluids M 71. Springer, Berlin

    Google Scholar 

  19. Shliomis MI (1972) Effective viscosity of magnetic suspensions. Soviet Phys JETP 34(6):1291–1294

    Google Scholar 

  20. McTague JP (1969) Magnetoviscosity of magnetic colloids. J Chem Phys 51(1):133–136

    Google Scholar 

  21. Rosensweig RE, Kaiser R, Miskolczy G (1969) Viscosity of magnetic fluid in a magnetic field. J Colloid Interface Sci 29(4):680–686

    Google Scholar 

  22. Ambacher O, Odenbach S, Stierstadt K (1992) Rotational viscosity in ferrofluids. Z Phys B Condens Matter 86:29–32

    Google Scholar 

  23. Patel R, Upadhyay RV, Mehta RV (2003) Viscosity measurements of a ferrofluid: comparison with various hydrodynamic equations. J Colloid Interface Sci 263:661–664

    Google Scholar 

  24. Zubarev A, Odenbach S, Fleisher J (2002) Rheological properties of dense ferrofluids. Effect of chain-like aggregates. J Magn Magn Mater 252:241–243

    Google Scholar 

  25. Zubarev A (2002) In: Odenbach S (ed) Ferrofluids, magnetically controllable fluids and their aplications. Lecture notes in physics. Springer, Berlin, p 143

    Google Scholar 

  26. Zubarev AY, Iskakova LY (2004) To the theory of rheological properties of ferrofluids: influence of drop-like aggregates. Phys A 343:65–80

    Google Scholar 

  27. Hezaveh H, Fazlali A, Noshadi I (2012) Synthesis, rheological properties and magnetoviscos effect of Fe2O3/paraffin ferrofluids. J Taiwan Inst Chem E 43:159–164

    Google Scholar 

  28. Roscoe R (1952) The viscosity of suspensions of rigid spheres. J Appl Phys 3(8):267–269

    Google Scholar 

  29. Hong RY, Ren ZQ, Han YP et al (2007) Rheological properties of water-based Fe3O4 ferrofluids. Chem Eng Sci 62:5912–5924

    Google Scholar 

  30. Hosseini SM, Fazlali A, Ghasemi E et al (2010) Rheological properties of a y-Fe2O3 paraffin-based ferrofluid. J Magn Magn Mater 322:3792–3796

    Google Scholar 

  31. Rodríguez-Arco L, López-López MT, Durán JDG et al (2011) Stability and magnetorheological behaviour of magnetic fluids based on ionic liquids. J Phys Condens Matter 23:15

    Google Scholar 

  32. Shah K, Upadhyay RV, Aswal VK (2012) Influence of large size magnetic particles on the magneto-viscous properties of ferrofluid. Smart Mater Struct 21:12

    Google Scholar 

  33. Vékás L (2004) Magnetic nanofluids properties and some applications. Rom J Phys 49:707–721

    Google Scholar 

  34. Krieger IM, Dougherty TJ (1959) A mechanism for non-Newtonian flow in suspensions of rigid spheres. T Soc Rheol 3:137–152

    Google Scholar 

  35. Andhariya N, Chudasama B, Patel R et al (2008) Field induced rotational viscosity of ferrofluid: effect of capillary size and magnetic field direction. J Colloid Interface Sci 323:153–157

    Google Scholar 

  36. Lian W, Xuan Y, Li Q (2009) Design method of automatic energy transport devices based on the thermomagnetic effect of magnetic fluids. Int J Heat Mass Transf 52:5451–5458

    MATH  Google Scholar 

  37. Martsenyuk MA, Raikher YL, Shliomis MI (1974) On the kinetics of magnetization of suspensions of ferromagnetic particles. Sov Phys JETP 38:413

    Google Scholar 

  38. Hinch EJ, Leal LG (1972) The effect of Brownian motion on the rheological properties of a suspension of non-spherical particles. J Fluid Mech 52:683–712

    MATH  Google Scholar 

  39. Larson RG (1999) The structure and rheology of complex fluids. Oxford University Press, New York

    Google Scholar 

  40. Olabi AG, Grunwald A (2007) Design and application of magneto-rheological fluid, technical report. Mater Des 28:2658–2664

    Google Scholar 

  41. Lim ST, Cho MS, Jang IB et al (2004) Magnetorheological characterization of carbonyl iron based suspension stabilized by fumed silica. J Magn Magn Mater 282:170

    Google Scholar 

  42. Park JH, Kwon MH, Park OO (2001) Rheological properties and stability of magnetorheological fluids using viscoelastic medium and nanoadditives. Korean J Chem Eng 18:580–585

    Google Scholar 

  43. Cho MS, Lim ST, Jang IB et al (2004) Encapsulation of spherical iron-particle with PMMA and its magnetorheological particles. IEEE Trans Magn 40(4):3036–3038

    Google Scholar 

  44. Fang FF, Choi HJ, Choi WS (2010) Two-layer coating with polymer and carbon nanotube on magnetic carbonyl iron particle and its magnetorheology. Colloid Polym Sci 288:359–363

    Google Scholar 

  45. Charles SW (2002) The preparation of magnetic fluids. In: Odenbach S (ed) Ferrofluids: magnetically controllable fluids and their applications, vol 594. Lecture notes in physics. Springer, Berlin, pp 3–18

    Google Scholar 

  46. Bica I, Liu YD, Choi HJ (2013) Physical characteristics of magnetorheological suspensions and their applications. J Ind Eng Chem 19:394–406

    Google Scholar 

  47. Park BJ, Park CW, Yang SW et al (2009) Core-shell typed polymer coated-carbonyl iron suspensions and their magnetorheology. J Phys Conf Ser 149:012078

    Google Scholar 

  48. Engin T, Evrensel C, Gordanineja F (2005) Numerical simulation of laminar flow of water-based magneto-rheological fluids in microtubes with wall roughness effect. Int Commun Heat Mass 32:1016–1025

    Google Scholar 

  49. Jiang W, Zhang Y, Xuan S et al (2011) Dimorphic magnetorheological fluid with improved rheological properties. J Magn Magn Mater 323:3246–3250

    Google Scholar 

  50. Iglesias GR, López-López MT, Durán JDG et al (2012) Dynamic characterization of extremely bidisperse magnetorheological fluids. J Colloid Interface Sci 377:153–159

    Google Scholar 

  51. Omidbeygi F, Hashemabadi SH (2012) Experimental study and CFD simulation of rotational eccentric cylinder in a magnetorheological fluid. J Magn Magn Mater 324:2062–2069

    Google Scholar 

  52. Serrano AR, Donado F, Rubio-Rosas E (2013) Preparation and characterization of magnetite/dextran nanocomposite used as a precursor of magnetic fluid. J Magn Magn Mater 335:149–158

    Google Scholar 

  53. Burguera EF, Love BJ, Sahul R et al (2008) A physical basis for stability in bimodal dispersions including micrometer-sized particles and nanoparticles using both linear and non-linear models to describe yield. J Intel Mat Syst Str 19:1361–1367

    Google Scholar 

  54. Wang X, Gordaninejad F (1999) Flow analysis of field-controllable, electro-and magneto-rheological fluids using Herschel-Bulkley model. J Intel Mat Syst Str 10:601–608

    Google Scholar 

  55. Resiga DS, Vékás L, Susan-Resiga R et al (2007) A rheological model for magneto-rheological fluids. In: Proceedings of the 3rd German–Romanian workshop on turbomachinery hydrodynamics, Timisoara, May 10–12, pp 141–148

    Google Scholar 

  56. Yamanaka S, Abe H, Naito M et al (2012) Colloidal dispersibility of fatty acid-capped iron nanoparticles and its effect on static and dynamic magnetorheological response. Colloid Surf A 415:239–246

    Google Scholar 

  57. Mrlik M, Sedlacik M, Pavlinek V et al (2013) Magnetorheology of carbonyl iron particles coated with polypyrrole ribbons: the steady shear study. J Phys Conf Ser 412:012016

    Google Scholar 

  58. Sidpara A, Das M, Jain VK (2009) Rheological characterization of magnetorheological finishing fluid. Mater Manuf Process 24:1467–1478

    Google Scholar 

  59. Gabriel C, Laun HM (2009) Combined slit and plate–plate magnetorheometry of a magnetorheological fluid (MRF) and parameterization using the Casson model. Rheol Acta 48:755–768

    Google Scholar 

  60. Kim IG, Song KH, Park BO et al (2011) Nano-sized Fe soft-magnetic particle and its magnetorheology. Colloid Polym Sci 289:79–83

    Google Scholar 

  61. Farjoud A, Ahmadian M, Mahmoodi N et al (2011) Nonlinear modeling and testing of magneto-rheological fluids in low shear rate squeezing flows. Smart Mater Struct 20:085013

    Google Scholar 

  62. Resiga DS (2009) A rheological model for magneto-rheological fluids. J Intel Mat Syst Str 20:1001–1010

    Google Scholar 

  63. Ginder JM, Davis LC, Elie LD (1995) Rheology of magnetorheological fluids: models and measurements. In: 5th International conference on ER fluids and MR suspensions, Singapore, pp 504–514

    Google Scholar 

  64. Ginder JM, Davis LC, Elie LD (1996) Rheology of magnetorheological fluids: models and measurements. Int J Mod Phys B 10(23–24):3293–3303

    Google Scholar 

  65. Genc S, Phulé PP (2002) Rheological properties of magnetorheological fluids. Smart Mater Struct 11:140–146

    Google Scholar 

  66. Charles E, See H (2009) Microstructural investigations of the yielding behaviour of bidisperse magnetorheological fluids. Rheol Acta 48:19–32

    Google Scholar 

  67. Kittipoomwong D, Klingenberg DJ, Ulincy JC (2005) Dynamic yield stress enhancement in bidispersion magnetorheological fluids. J Rheol 49:1521

    Google Scholar 

  68. Wereley NM, Chaudhuri A, Yoo JH et al (2006) Bidisperse magnetorheological fluids using Fe particle at nanometer and micron scale. J Intell Mater Syst Struct 17:393–401

    Google Scholar 

  69. Ginder JM, Nichols ME, Elie LD et al (1999) Magnetorheological elastomers: properties and applications. In: Wutttig M (ed) Proceedings of SPIE. Smart structures and materials, vol 3675. Smart Materials Technologies, Newport Beach, 12 July 1999

    Google Scholar 

  70. See H (2001) Mechanisms of magneto-and electro-rheology: recent progress and unresolved issues. Appl Rheol 11(2):70–82

    Google Scholar 

  71. Brady JF, Bossis G (1988) Stokesian dynamics. Ann Rev Fluid Mech 20:111–157

    Google Scholar 

  72. Orihara H, Doi M, Ishibashi Y (1999) Two types of mechanism of electrorheological effect in polymer blends. Int J Mod Phys B 13:1949–1955

    Google Scholar 

  73. Bonnecaze RT, Brady JF (1992) Yield stresses in electrorheological fluids. J Rheol 36:73–115

    Google Scholar 

  74. Fang FF, Choi HJ, Jhon MS (2009) Magnetorheology of soft magnetic carbonyl iron suspension with single-walled carbon nanotube additive and its yield stress scaling function. Colloid Surf A 351:46–51

    Google Scholar 

  75. Hato MJ, Choi HJ, Sim HH et al (2011) Magnetic carbonyl iron suspension with organoclay additive and its magnetorheological properties. Colloid Surf A 377:103–109

    Google Scholar 

  76. Hong CH, Liu YD, Choi HJ (2013) Carbonyl iron suspension with halloysite additive and its magnetorheology. Appl Clay Sci 80:366–371

    Google Scholar 

  77. Cho MS, Choi HJ, Jhon MS (2005) Shear stress analysis of a semiconducting polymer based electrorheological fluid system. Polymer 46:11484–11488

    Google Scholar 

  78. Choi HJMS, Cho JW, Kim CAMS et al (2001) A yield stress scaling function for electrorheological fluids. Appl Phys Lett 78:3806

    Google Scholar 

  79. Gordanlnejad F, Fuchs A, Dogrour U et al (2004) A new generation of magneto-rheological fluid dampers. Final progress report

    Google Scholar 

  80. Bell RC, Karli JO, Vavreck AN et al (2008) Magnetorheology of submicron diameter iron microwires dispersed in silicone oil. Smart Mater Struct 17:015028

    Google Scholar 

  81. Cheng H, Yeung Y, Tong H (2008) Viscosity behavior of magnetic suspensions in fluid-assisted finishing. Prog Nat Sci 18:91–96

    Google Scholar 

  82. Shulman ZP, Kordonskii VI, Zaltsgendler EA (1984) Structure and magnetic and rheological characteristics of a ferrosuspension. Magnetohydrodynamics 20(3):223–229

    Google Scholar 

  83. López-López MT, Kuzhir P, Meunier AG et al (2010) Synthesis and magnetorheology of suspensions of submicron-sized cobalt particles with tunable particle size. J Phys Condens Matter 22:324106

    Google Scholar 

  84. Vereda F, Vicente J, Segovia-Gutierrez JP et al (2011) Average particle magnetization as an experimental scaling parameter for the yield stress of dilute magnetorheological fluids. J Phys D Appl Phys 44:425002

    Google Scholar 

  85. Vicente J, Vereda F, Segovia-Gutierrez JP et al (2010) Effect of particle shape in magnetorheology. J Rheol 54:1337–1343

    Google Scholar 

  86. Vicente J, Segovia-Gutierrez JP, Andablo-Reyes E et al (2009) Dynamic rheology of sphere- and rod-based magnetorheological fluids. J Chem Phys 131:10

    Google Scholar 

  87. Vereda J, Vicente J, Hidalgo-Alvarez R (2007) Influence of a magnetic field in the formation of magnetite particles via two precipitation methods. Langmuir 23:3581–3589

    Google Scholar 

  88. Vicente J, Klingenberg DJ, Hidalgo-Alvarez R (2011) Soft Matter 7:3701

    Google Scholar 

  89. Mrlík M, Ilčíková M, Pavlínek V et al (2013) Improved thermooxidation and sedimentation stability of covalently-coated carbonyl iron particles with cholesteryl groups and their influence on magnetorheology. J Colloid Interface Sci 396:146–151

    Google Scholar 

  90. Shah K, Phu DX, Seong MS et al (2014) A low sedimentation magnetorheological fluid based on platelike iron particles, and verification using a damper test. Smart Mater Struct 23:027001

    Google Scholar 

  91. Bird RB, Stewart WE, Lightfoot EN (2006) Transport phenomena, 2nd edn. Wiley, New York

    Google Scholar 

  92. Neuringer JL, Rosensweig RE (1964) Ferrohydrodynamics. Phys Fluids 7(12):1927

    Google Scholar 

  93. Rosensweig RE (2004) Continuum equations for magnetic and dielectric fluids with internal rotations. J Chem Phys 121(3):1228–1242

    Google Scholar 

  94. Rosensweig RE (2002) Basic equations for magnetic fluids with internal rotations. In: Odenbach (ed) Ferrofluids. Lecture notes in physics, vol 594. Springer, Berlin, pp 61–84

    Google Scholar 

  95. Rosensweig RE (1987) Magnetic fluids. Ann Rev Fluid Mech 19:437–453

    Google Scholar 

  96. Egolf PW, Manz H (1994) Theory and modelling of phase change materials with and without mushy regions. Int J Heat Mass Transf 37(18):2917–2924

    MATH  Google Scholar 

  97. Xuan Y, Roetzel W (2000) Conceptions for heat transfer correlation of nanofluids. Int J Heat Mass Transf 43:3701–3708

    MATH  Google Scholar 

  98. Fang X, Xuan Q, Li Q (2009) Anisotropic thermal conductivity of magnetic fluids. Prog Nat Sci 19(2):205–211

    Google Scholar 

  99. Fang X, Xuan Y, Li Q (2009) Anisotropic thermal transport in magnetic fluids. In: ASME 2009 second international conference on micro/nanoscale heat and mass transfer, vol 1. Shanghai, pp 18–21

    Google Scholar 

  100. Reinecke BN, Shan JW, Suabedissen KK et al (2008) On the anisotropic thermal conductivity of magnetorheological suspensions. J Appl Phys 104(2):023507

    Google Scholar 

  101. Parekh K, Lee HS (2010) Magnetic field induced enhancement in thermal conductivity of magnetite nanofluid. J Appl Phys 107(9):09A310

    Google Scholar 

  102. Nkurikiyimfura I, Wanga Y, Pan Z (2013) Effect of chain-like magnetite nanoparticle aggregates on thermal conductivity of magnetic nanofluid in magnetic field. Exp Therm Fluid Sci 44:607–612

    Google Scholar 

  103. Nkurikiyimfura I, Wanga Y, Pan P (2013) Heat transfer enhancement by magnetic nanofluids: a review. Renew Sust Energ Rev 21:548–561

    Google Scholar 

  104. Egolf PW, Ata-Caesar D, Kitanovski A et al (2005) Thermal energy transport and storage with multi-functional fluids: the effective thermal conductivity. In: The sixth KSME-JSME thermal and fluids engineering conference, Jeju City, Korea

    Google Scholar 

  105. Maxwell JC (1873) A treatise on electricity and magnetism. Clarendon Press, Oxford

    Google Scholar 

  106. Kaviany M (1995) Principles of heat transfer in porous media. Springer, New York

    MATH  Google Scholar 

  107. Kandula M (2011) On the effective thermal conductivity of porous packed beds with uniform spherical particles. J Porous Media 14(10):919–926

    Google Scholar 

  108. Kleinstreuer C, Feng Y (2011) Experimental and theoretical studies of nanofluid: thermal conductivity enhancement: a review. Nanoscale Res Lett 6(1):1–13

    Google Scholar 

  109. Wang XQ, Mujumdar AS (2008) A review on nanofluids-part I: theoretical and numerical Investigations. Braz J Chem Eng 25(4):613–630

    Google Scholar 

  110. Singh AK (2008) Thermal conductivity of nanofluids. Defence Sci J 58:600–607

    Google Scholar 

  111. Das SK, Putra N, Theisen P et al (2003) Temperature dependence of thermal conductivity enhancement for nanofluids. J Heat Transf 125(4):567–574

    Google Scholar 

  112. Abareshi M, Goharshiadi EK, Zebarjad SM et al (2010) Fabrication, characterization and measurement of thermal conductivity of Fe3O4 nanofluids. J Magn Magn Mater 322(24):3895–3901

    Google Scholar 

  113. Wang XW, Xu XF, Choi SUS (1999) Thermal conductivity of nanoparticle-fluid mixture. J Thermophys Heat Transf 13(4):474–480

    Google Scholar 

  114. Li CH, Peterson GP (2006) Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids). J Appl Phys 99(8):084314

    Google Scholar 

  115. Zhu D, Li X, Wang N et al (2009) Dispersion behavior and thermal conductivity characteristics of Al2O3-H2O nanofluids. Curr Appl Phys 9:131–139

    MathSciNet  Google Scholar 

  116. Jang SP, Choi SUS (2004) Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl Phys Lett 84:4316–4318

    Google Scholar 

  117. Timofeeva EV, Gavrilov AN, McCloskey JM et al (2007) Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory. Phys Rev E 76:061203

    Google Scholar 

  118. Timofeeva EV, Smith DS, Yu W et al (2010) Particle size and interfacial effects on thermo-physical and heat transfer characteristics of water-based alpha-SiC nanofluids. Nanotechnology 21:215703

    Google Scholar 

  119. Murshed SMS, Leong KC, Yang C (2005) Enhanced thermal conductivity of TiO2-water based nanofluids. Int J Therm Sci 44:367–373

    Google Scholar 

  120. Lee S, Choi SUS, Li S et al (1999) Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transf 121:280–289

    Google Scholar 

  121. Keblinski P, Phillpot SR, Choi SUS et al (2002) Mechanisms of heat flow in suspensions of nanos-sized particles (nanofluids). Int J Heat Mass Transf 45:855–863

    MATH  Google Scholar 

  122. Jang SP, Choi SUS (2007) Effects of various parameters on nanofluid thermal conductivity. J Heat Transf 129:617–623

    Google Scholar 

  123. Kleinstreuer C, Li J (2008) Discussion: effects of various parameters on nanofluid thermal conductivity. J Heat Transf 130:025501

    Google Scholar 

  124. Prasher (2006) Brownian-motion-based convective-conductive model for the effective thermal conductivity of nanofluids. J Heat Transf 128:588–595

    Google Scholar 

  125. Li J (2008) Computational analysis of nanofluid flow in microchannels with applications to micro-heat sinks and bio-MEMS. PhD thesis, North Carolina State University

    Google Scholar 

  126. Kumar DH, Patel HE, Kumar VRR et al (2004) Model for heat conduction in nanofluids. Phys Rev Lett 93:144301

    Google Scholar 

  127. Koo J, Kleinstreuer C (2004) A new thermal conductivity model for nanofluids. J Nanopart Res 6:577–588

    Google Scholar 

  128. Bao Y (2008) Thermal conductivity equations based on Brownian motion in suspensions of nanoparticles (nanofluids). J Heat Transf 130:042408

    Google Scholar 

  129. Feng Y, Kleinstreuer C (2010) Nanofluid convective heat transfer in a parallel disk system. Int J Heat Mass Transf 53:4619–4628

    MATH  Google Scholar 

  130. Blums E (2002) Heat and mass transfer phenomena. In: Odenbach S (ed) Ferrofluids: magnetically controllable fluids and their applications, vol 594. Lecture notes in physics. Springer, Berlin

    Google Scholar 

  131. Li Q, Xuan Y, Wang J (2005) Experimental investigations on transport properties of magnetic fluids. Exp Therm Fluid Sci 30:109–116

    Google Scholar 

  132. Krichler M, Odenbach S (2013) Thermal conductivity measurements on ferrofluids with special reference to measuring arrangement. J Magn Magn Mater 326:85–90

    Google Scholar 

  133. Philip J, Shima P, Raj B (2008) Evidence for enhanced thermal conduction through percolating structures in nanofluids. Nanotechnology 19:305706

    Google Scholar 

  134. Philip J, Shima P, Raj B (2007) Enhancement of thermal conductivity in magnetite based nanofluid due to chainlike structures. Appl Phys Lett 91:203108

    Google Scholar 

  135. Wright B, Thomas D, Hong H et al (2007) Magnetic field enhanced thermal conductivity in heat transfer nanofluids containing Ni coated single wall carbon nanotubes. Appl Phys Lett 91:173116

    Google Scholar 

  136. Wensel J, Wright B, Thomas D et al (2008) Enhanced thermal conductivity by aggregation in heat transfer nanofluids containing metal oxide nanoparticles and carbon nanotubes. Appl Phys Lett 92:023110

    Google Scholar 

  137. Shima PD, Philip J, Raj B (2009) Magnetically controllable nanofluid with tunable thermal conductivity and viscosity. Appl Phys Lett 95:133112

    Google Scholar 

  138. Gavili A, Zabihi F, Isfahani TD et al (2012) The thermal conductivity of water base ferrofluids under magnetic field. Exp Therm Fluid Sci 41:94–98

    Google Scholar 

  139. Nkurikiyimfura I, Wang Y, Pan Z et al (2011) Thermal conductivity enhancement of magnetic nanofluid in magnetic field. In: Proceedings of the international conference on materials for renewable energy and environment (ICMREE), Shanghai, 20–22 May

    Google Scholar 

  140. Keblinski P, Prasher R, Eapen J (2008) Thermal conductance of nanofluids: is the controversy over? J Nanopart Res 10:1089–1097

    Google Scholar 

  141. Keblinski P (2009) Thermal conductivity of nanofluids. In: Volz S (ed) Thermal nanosystems and nanomaterials. Springer, Berlin, pp 213–221

    Google Scholar 

  142. Eapen J, Rusconi R, Piazza R et al (2010) The classical nature of thermal conduction in nanofluids. J Heat Transf 132:102402

    Google Scholar 

  143. Prasher R, Evans W, Meakin P et al (2006) Effect of aggregation on thermal conduction in colloidal nanofluids. Appl Phys Lett 89:143119

    Google Scholar 

  144. Tillman P, Hill JMA (2006) New model for thermal conductivity in nanofluids. In: Proceedings of the International conference on nanoscience and nanotechnology, Brisbane, 3–7 July

    Google Scholar 

  145. Wang BX, Sheng WY, Peng XFA (2009) Novel statistical clustering model for predicting thermal conductivity of nanofluid. Int J Thermophys 30(6):1992–1998

    Google Scholar 

  146. Tillman P, Hill JM (2010) Modeling the thermal conductivity of nanofluids. In: Bai YL, Zheng QS, Wei YG (eds) Proceedings of the IUTAM symposium on mechanical behavior and micro-mechanics of nanostructured materials, Beijing, 27–30 June. Springer, Heidelberg, pp 111–118

    Google Scholar 

  147. Wang L, Fan J (2011) Toward nanofluids of ultra-high thermal conductivity. Nanoscale Res Lett 6:153

    Google Scholar 

  148. Bishop KJM, Wilmer CE, Soh S et al (2009) Nanoscale forces and their uses in self-assembly. Small 5(14):1600–1630

    Google Scholar 

  149. Mendelev VS, Ivanov AO (2004) Ferrofluid aggregation in chains under the influence of a magnetic field. Phys Rev E 70:051502

    Google Scholar 

  150. Resler EL Jr, Rosensweig RE (1964) Magnetocaloric power. AIAA J 2(8):1418–1422

    Google Scholar 

  151. Resler EL Jr, Rosensweig RE (1967) Regenerative thermomagnetic power. J Eng P 89:399–406

    Google Scholar 

  152. Van der Voort E (1969) Ideal magnetocaloric conversion. Appl Sci Res 20:98–114

    Google Scholar 

  153. Burnett JE (1993) Magnetic heating and cooling systems. US patent 5.231.834

    Google Scholar 

  154. Shao YZ, Lai JKL, Shek CH (1996) Preparation of nanocomposite working substances for room-temperature magnetic refrigeration. J Magn Magn Mater 163:103–108

    Google Scholar 

  155. Shir F, Yarik L, Bennett LH et al (2003) Room temperature active regenerative magnetic refrigeration: magnetic nanocomposites. J Appl Phys 93(10):8295–8297

    Google Scholar 

  156. Jordan A, Wust P, Fahling H et al (1993) Inductive heating of ferrimagnetic particles and magnetic fluids: physical evaluation of their potential for hyperthermia. Int J Hyperth 9(1):51–68

    Google Scholar 

  157. Hiergeist R, Andra W, Buske N et al (1999) Application of magnetite ferrofluids for hyperthermia. J Magn Magn Mater 201:420–422

    Google Scholar 

  158. Rosensweig RE (2002) Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater 252:370–374

    Google Scholar 

  159. Tishin AM (2006) Method for carrying out a magnetic therapy of malignant neoplasms. WO 2006135270:A1

    Google Scholar 

  160. Tishin AM, Zatsepina EV, Egolf PW et al (2009) Magnetocaloric effect applied for a cancer tumour defeat: an improved hyperthermia method. In: Proceedings of third IIF-IIR international conference on magnetic refrigeration at room temperature, Des Moines, 11–15 May

    Google Scholar 

  161. Li J, Qu Y, Ren J et al (2012) Magnetocaloric effect in magnetothermally-responsive nanocarriers for hyperthermia-triggered drug release. Nanotechnology 23(50):505706

    Google Scholar 

  162. Love LJ, Jansen JF, McKnight TE et al (2003) Magnetocaloric pump for lab-on-a chip technology: phase I report ORNL/TM-2003/245. Report, U.S. Department of Energy

    Google Scholar 

  163. Love LJ, Jansen JF, McKinght TE et al (2004) A magnetocaloric pump for microfluidic applications. IEEE T Nanobiosci 3(2):101–110

    Google Scholar 

  164. Yamaguchi H, Sumiji A, Shuchi S et al (2004) Characteristics of thermo-magnetic driven motor using magnetic fluid. J Magn Magn Mater 272:2362–2364

    Google Scholar 

  165. Fumoto K, Ikegawa M, Kawanami T et al (2009) Heat transfer characteristics of a thermosensitive magnetic fluid in microchannel. J Therm Sci Tech-JPN 4(3):332–339

    Google Scholar 

  166. Lian W, Xuan Y, Li Q (2009) Design method of automatic energy transport devices based on the thermomagnetic effect of magnetic fluids. Int J Heat Mass Transf 52:5451–5458

    MATH  Google Scholar 

  167. Xuan Y, Lian W (2011) Electronic cooling using an automatic energy transport device based on thermomagnetic effect. Appl Therm Eng 31:1487–1494

    Google Scholar 

  168. Pal S, Chakraborty S, Datta A et al (2010) Experimental investigation of a ferrofluid based thermomagnetic pump. In: Proceedings of the 37th national and 4th international conference on fluid mechanics and fluid power, IIT Madras, Chennai, 16–18 Dec

    Google Scholar 

  169. Pal S, Datta A, Sen S et al (2011) Characterization of a ferrofluid-based thermomagnetic pump for microfluidic applications. J Magn Magn Mater 323:2701–2709

    Google Scholar 

  170. Kitanovski A, Egolf PW (2010) Innovative ideas for future research on magnetocaloric technologies. Int J Refrig 33:449–464

    Google Scholar 

  171. Xia C, Liu T, Qin X et al (2011) Research on the micropump based on the magnetocaloric effect of magnetic fluid. In: Second international conference on mechanic automation and control engineering, Inner Mongolia, 15–17 July

    Google Scholar 

  172. Nguyen NT (2012) Micro magnetofluidics: interactions between magnetism and fluid flow on the microscale. Microfluid Nanofluid 12(1–4):1–16

    Google Scholar 

  173. Petit M, Avenas Y, Kedous-Lebouc A et al (2014) Experimental study of a static system based on a magneto-thermal coupling in ferrofluids. Int J Refrig 37:201–208

    Google Scholar 

  174. Kitanovski A, Egolf PW, Sari O (2009) Method and device for the generation of cold and heat by magneto-calorific effect. US patent 7481063 B2

    Google Scholar 

  175. Darby R (1986) Hydrodynamics of slurries and suspensions. In: Cheremisinoff NP (ed) Encyclopedia of fluid mechanics: slurry flow technology. Gulf Publishing Company, New York, pp 49–92

    Google Scholar 

  176. Hanks RW (1986) Principles of slurry pipeline hydraulics. In: Cheremisinoff NP (ed) Encyclopedia of fluid dynamics: slurry flow technology. Gulf Publishing Company, Houston, pp 213–276

    Google Scholar 

  177. Steffe JF (1992) Rheological methods in food process engineering, 2nd edn. Freeman press, Michigan

    Google Scholar 

  178. Guth E, Simha R (1936) Untersuchungen über die Viskosität von Suspensionen und Lösungen. 3. Über die viskosität von kugelsuspensionen. Kolloid Z 74(3):266–275

    Google Scholar 

  179. Vand V (1948) Viscosity of solutions and suspensions. 1. Theory. J Phys Colloid Chem 52:277–299

    Google Scholar 

  180. Mooney M (1951) The viscosity of a concentrated suspension of spherical particles. J Colloid Sci 6:162–170

    Google Scholar 

  181. Frankel NA, Acrivos A (1967) On the viscosity of a concentrated suspension of solid spheres. Chem Eng Sci 22:847–853

    Google Scholar 

  182. Jeffrey DJ, Acrivos A (1976) The rheological properties of suspensions of rigid particles. AIChE J 22:417–432

    Google Scholar 

  183. Thomas DG (1965) Transport characteristics of suspension: VIII. A note on the viscosity of Newtonian suspensions of uniform spherical particles. J Colloid Sci 20:267–277

    Google Scholar 

  184. Batchelor GK (1977) The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J Fluid Mech 83(1):97–117

    MathSciNet  Google Scholar 

  185. Bicerano J, Douglas JF, Brune DA (1999) Model for the viscosity of particle dispersions. JMS Rev Macromol Chem Phys C 39(4):561–642

    Google Scholar 

  186. Brinkman HC (1952) The viscosity of concentrated suspensions and solutions. J Chem Phys 20:571

    Google Scholar 

  187. Papanastasiou TC (1987) Flow of materials with yield. J Rheol 31:385–404

    MATH  Google Scholar 

  188. Barnes HA, Hutton JE, Walters FRSK (1989) An introduction to rheology. Elsevier, Amsterdam

    MATH  Google Scholar 

  189. Rayleigh Lord (1892) On the influence of obstacles in rectangular order upon the properties of a medium. Philos Mag 56:481–502

    Google Scholar 

  190. Jeffrey DJ (1973) Conduction through a random suspension of spheres. P Roy Soc A Math Phys A 335:355–367

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kitanovski, A., Tušek, J., Tomc, U., Plaznik, U., Ožbolt, M., Poredoš, A. (2015). Magnetocaloric Fluids. In: Magnetocaloric Energy Conversion. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-08741-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08741-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08740-5

  • Online ISBN: 978-3-319-08741-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics