Skip to main content

Alternative Caloric Energy Conversions

  • Chapter
  • First Online:
Magnetocaloric Energy Conversion

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

In this chapter some alternative, “ferroic”, solid-state energy conversion technologies are presented. These are the electrocaloric (pyroelectric), the barocaloric and the elastocaloric energy conversions. In their nature, they are analogous to magnetocaloric energy conversion; however, different external influences are needed to initialize the caloric effect. In the case of electrocaloric energy conversion, this is related to a change in the electric field, in the case of barocalorics, to a change in the hydrostatic pressure, and in case of elastocaloric energy conversion, to a change in the mechanical stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kao KC (2004) Dielectric phenomena in solids. Academic Press, London

    Google Scholar 

  2. Young JS (2012) Indirect measurement of the electrocaloric effect. Dissertation, University of Cambridge

    Google Scholar 

  3. Pirc R, Kutnjak Z, Blinc R et al (2011) Electrocaloric effect in relaxor ferroelectrics. J Appl Phys 110(7):074113

    Article  Google Scholar 

  4. Valant M (2012) Electrocaloric materials for future solid-state refrigeration technologies. Prog Mater Sci 57(6):980–1009

    Article  Google Scholar 

  5. Lu S, Rožič B, Zhang Q et al (2010) Comparison of directly and indirectly measured electrocaloric effect in relaxor ferroelectric polymers. Appl Phys Lett 97(20):202901

    Article  Google Scholar 

  6. Scott JF (2011) Electrocaloric materials. Annu Rev Mater Res 41(1):229–240

    Article  Google Scholar 

  7. Wiseman G, Kuebler JK (1963) Electrocaloric effect in ferroelectric rochelle salt. Phys Rev 131(5):2023–2027

    Article  Google Scholar 

  8. Mischenko A, Zhang Q, Scott J et al (2006) Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3. Science 311:1270–1271

    Article  Google Scholar 

  9. Ožbolt M, Kitanovski A, Tušek J et al (2014) Electrocaloric refrigeration: thermodynamics, state of the art and future perspectives. Int J Refrig 40:174–188

    Article  Google Scholar 

  10. Niemann R, Heczko O, Schultz L et al (2014) Inapplicability of the Maxwell relation for the quantification of caloric effects in anisotropic ferroic materials. Int J Refrig 37:281–288

    Article  Google Scholar 

  11. Goupil FL, Berenov A, Axelsson A-K et al (2012) Direct and indirect electrocaloric measurements on <001> PbMg1/3Nb2/3O3-30PbTiO3 single crystals. J Appl Phys 111(12):124109

    Article  Google Scholar 

  12. Rožič B, Malič B, Uršič H et al (2010) Direct measurements of the giant electrocaloric effect in soft and solid ferroelectric materials. Ferroelectrics 405(1):26–31

    Article  Google Scholar 

  13. Kutnjak Z, Rožič B (2014) Indirect and direct measurements of the electrocaloric effect. In: Correia T, Zhang Q (eds) Electrocaloric materials. Springer, Berlin Heidelberg, pp 147–182

    Chapter  Google Scholar 

  14. Moulson AJ, Herbert JM (2003) Electroceramics: materials, properties, applications. Wiley, New York

    Google Scholar 

  15. Qian X-S, Ye H-J, Zhang Y-T et al (2014) Giant electrocaloric response over a broad temperature range in modified BaTiO3 ceramics. Adv Funct Mater 24(9):1300–1305

    Article  Google Scholar 

  16. Zheng X-C, Zheng G-P, Lin Z et al (2012) Electro-caloric behaviors of lead-free Bi0.5Na0.5TiO3-BaTiO3 ceramics. J Electroceram 28(1):20–26

    Article  Google Scholar 

  17. Jiang X, Luo L, Wang B et al (2014) Electrocaloric effect based on the depolarization transition in (1 − x)Bi0.5Na0.5TiO3 – xKNbO3 lead-free ceramics. Ceram Int 40(2):2627–2634

    Article  Google Scholar 

  18. Bai Y, Zheng G-P, Shi S-Q (2011) Abnormal electrocaloric effect of Na0.5Bi0.5TiO3–BaTiO3 lead-free ferroelectric ceramics above room temperature. Mater Res Bull 46(11):1866–1869

    Article  Google Scholar 

  19. Rožič B, Kosec M, Uršič H et al (2011) Influence of the critical point on the electrocaloric response of relaxor ferroelectrics. J Appl Phys 110(6):064118

    Article  Google Scholar 

  20. Rožič B, Kutnjak Z (2009) Giant electrocaloric effect in ferroelectric relaxor materials. In: Proceedings of the 2009 SEM annual conference and exposition on experimental and applied mechanics, Albuquerque New Mexico

    Google Scholar 

  21. Shaobo L, Yanqiu L (2004) Research on the electrocaloric effect of PMN/PT solid solution for ferroelectrics MEMS microcooler. Mater Sci Eng, B 113(1):46–49

    Article  Google Scholar 

  22. Xiao D, Wang Y, Zhang R et al (1998) Electrocaloric properties of (1- x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 ferroelectric ceramics near room temperature. Mater Chem Phys 57(2):182–185

    Article  Google Scholar 

  23. Valant M, Dunne LJ, Axelsson A-K et al (2010) Electrocaloric effect in a ferroelectric Pb(Zn1/3Nb2/3)O3-PbTiO3 single crystal. Phys Rev B 81(21):214110

    Article  Google Scholar 

  24. Bai Y, Zheng G-P, Ding K et al (2011) The giant electrocaloric effect and high effective cooling power near room temperature for BaTiO3 thick film. J Appl Phys 110(9):094103

    Article  Google Scholar 

  25. Kar-Narayan S, Mathur N (2010) Direct and indirect electrocaloric measurements using multilayer capacitors. J Phys D Appl Phys 43(3):032002

    Article  Google Scholar 

  26. Kar-Narayan S, Crossley S, Moya X et al (2013) Direct electrocaloric measurements of a multilayer capacitor using scanning thermal microscopy and infra-red imaging. Appl Phys Lett 102(3):032903

    Article  Google Scholar 

  27. Kar-Narayan S, Mathur N (2009) Predicted cooling powers for multilayer capacitors based on various electrocaloric and electrode materials. Appl Phys Lett 95(24):242903

    Article  Google Scholar 

  28. Shebanovs L, Borman K, Lawless W et al (2002) Electrocaloric effect in some perovskite ferroelectric ceramics and multilayer capacitors. Ferroelectrics 273(1):137–142

    Article  Google Scholar 

  29. Rožič B, Malič B, Uršič H et al (2012) The giant electrocaloric effect in inorganic and organic ferroelectric relaxor systems. Ferroelectrics 430(1):98–102

    Article  Google Scholar 

  30. Peng B, Fan H, Zhang Q (2013) A giant electrocaloric effect in nanoscale antiferroelectric and ferroelectric phases coexisting in a relaxor Pb0.8Ba0.2ZrO3 thin film at room temperature. Adv Funct Mater 23(23):2987–2992

    Article  Google Scholar 

  31. Lu S, Rožič B, Zhang Q et al (2010) Organic and inorganic relaxor ferroelectrics with giant electrocaloric effect. Appl Phys Lett 97:162904

    Article  Google Scholar 

  32. Saranya D, Chaudhuri A, Parui J et al (2009) Electrocaloric effect of PMN-PT thin films near morphotropic phase boundary. Bull Mater Sci 32(3):259–262

    Article  Google Scholar 

  33. Mischenko A, Zhang Q, Whatmore R et al (2006) Giant electrocaloric effect in the thin film relaxor ferroelectric 0.9PbMg1/3Nb2/3O3-0.1PbTiO3 near room temperature. Appl Phys Lett 89(24):242912

    Article  Google Scholar 

  34. Correia TM, Young JS, Whatmore RW et al (2009) Investigation of the electrocaloric effect in a PbMg2/3Nb1/3O3-PbTi03 relaxor thin film. Appl Phys Lett 95(18):182904

    Article  Google Scholar 

  35. Correia T, Kar-Narayan S, Young J et al (2011) PST thin films for electrocaloric coolers. J Phys D Appl Phys 44(16):165407

    Article  Google Scholar 

  36. Parui J, Krupanidhi SB (2008) Electrocaloric effect in antiferroelectric PbZrO3 thin films. Phys Status Solidi (RRL)–Rapid Res Lett 2(5):230–232

    Google Scholar 

  37. Tušek J, Kitanovski A, Zupan S et al (2013) A comprehensive experimental analysis of gadolinium active magnetic regenerators. Appl Therm Eng 53(1):57–66

    Article  Google Scholar 

  38. Li X, Qian X-S, Haiming G et al (2012) Giant electrocaloric effect in ferroelectric poly(vinylidenefluoride-trifluoroethylene) copolymers near a first-order ferroelectric transition. Appl Phys Lett 101(13):132903

    Article  Google Scholar 

  39. Lu SG, Rožič B, Zhang QM et al (2011) Enhanced electrocaloric effect in ferroelectric poly(vinylidene-fluoride/trifluoroethylene) 55/45 mol % copolymer at ferroelectric-paraelectric transition. Appl Phys Lett 98(12):122906

    Article  Google Scholar 

  40. Liu P, Wang J, Meng X et al (2010) Huge electrocaloric effect in Langmuir-Blodgett ferroelectric polymer thin films. New J Phys 12(2):023035

    Article  MathSciNet  Google Scholar 

  41. Neese B, Lu SG, Chu B et al (2009) Electrocaloric effect of the relaxor ferroelectric poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer. Appl Phys Lett 94(4):042910

    Article  Google Scholar 

  42. Chen X-Z, Li X, Qian X-S et al (2013) A polymer blend approach to tailor the ferroelectric responses in P(VDF–TrFE) based copolymers. Polymer 54(9):2373–2381

    Article  MathSciNet  Google Scholar 

  43. Barclay JA, Steyert WA (1982) Active magnetic regenerator. US Patent No. 4.332.135

    Google Scholar 

  44. Yu B, Liu M, Egolf PW et al (2010) A review of magnetic refrigerator and heat pump prototypes built before the year 2010. Int J Refrig 33(6):1029–1060

    Article  Google Scholar 

  45. Sinyavsky Y, Brodyansky V (1992) Experimental testing of electrocaloric cooling with transparent ferroelectric ceramic as a working body. Ferroelectrics 131(1):321–325

    Article  Google Scholar 

  46. Tomc U, Kitanovski A, Ožbolt M et al (2013) Method for electrocaloric energy conversion. Patent Application P003397EP

    Google Scholar 

  47. Ožbolt M, Kitanovski A, Tušek J et al (2014) Electrocaloric vs. magnetocaloric energy conversion. Int J Refrig 37:16–27

    Article  Google Scholar 

  48. Guo D, Gao J, Yu Y-J et al (2014) Design and modeling of a fluid-based micro-scale electrocaloric refrigeration system. Int J Heat Mass Transfer 72:559–564

    Article  Google Scholar 

  49. Gu H, Craven B, Qian X et al (2013) Simulation of chip-size electrocaloric refrigerator with high cooling-power density. Appl Phys Lett 102(11):112901

    Article  Google Scholar 

  50. Epstein RI, Malloy KJ (2009) Electrocaloric devices based on thin-film heat switches. J Appl Phys 106(6):064509

    Article  Google Scholar 

  51. Karmanenko SF, Pakhomov OV, Prudan AM et al (2007) Layered ceramic structure based on the electrocaloric elements working as a solid state cooling line. J Eur Ceram Soc 27(8):3109–3112

    Article  Google Scholar 

  52. Es’kov A, Karmanenko S, Pakhomov O et al (2009) Simulation of a solid-state cooler with electrocaloric elements. Phys Solid State 51(8):1574–1577

    Google Scholar 

  53. Jia Y, Ju YS (2012) A solid-state refrigerator based on the electrocaloric effect. Appl Phys Lett 100(24):242901

    Article  Google Scholar 

  54. Gu H, Qian X, Li X et al (2013) A chip scale electrocaloric effect based cooling device. Appl Phys Lett 102(12):122904

    Article  Google Scholar 

  55. Chukka R, Shannigrahi S, Chen L (2012) Investigations of cooling efficiencies in solid-state electrocaloric device. Integr Ferroelectr 133(1):3–8

    Article  Google Scholar 

  56. Plaznik U, Kitanovski A, Malič B et al (2014) Small scale electrocaloric cooling device with an active heat regenerator. In: Abstracts of the 6th IIF-IIR international conference on magnetic refrigeration, Victoria, 7–10 Sept 2014

    Google Scholar 

  57. Lang SB (2005) Pyroelectricity: from ancient curiosity to modern imaging tool. Phys Today 58(8):31–36

    Article  Google Scholar 

  58. Lang SB (2004) A 2,400 year history of pyroelectricity: from ancient Greece to exploration of the solar system. Br Ceram Trans 103(2):65–70

    Article  Google Scholar 

  59. Olsen RB (1982) Ferroelectric conversion of heat to electrical energy a demonstration. J Energy 6(2):91–95

    Article  Google Scholar 

  60. Kouchachvili L, Ikura M (2007) Pyroelectric conversion-effects of P (VDF–TrFE) preconditioning on power conversion. J Electrostat 65(3):182–188

    Article  Google Scholar 

  61. Lee FY, Jo HR, Lynch CS et al (2013) Pyroelectric energy conversion using PLZT ceramics and the ferroelectric–ergodic relaxor phase transition. Smart Mater Struct 22(2):025038

    Article  Google Scholar 

  62. Nguyen H, Navid A, Pilon L (2010) Pyroelectric energy converter using co-polymer P (VDF-TrFE) and Olsen cycle for waste heat energy harvesting. Appl Therm Eng 30(14):2127–2137

    Article  Google Scholar 

  63. Mane P, Xie J, Leang KK et al (2011) Cyclic energy harvesting from pyroelectric materials. IEEE Trans Ultrason Ferroelectr Freq Control 58(1):10–17

    Google Scholar 

  64. Kumar P, Sharma S, Thakur OP et al (2004) Dielectric, piezoelectric and pyroelectric properties of PMN–PT (68:32) system. Ceram Int 30(4):585–589

    Article  Google Scholar 

  65. Cuadras A, Gasulla M, Ferrari V (2010) Thermal energy harvesting through pyroelectricity. Sens Actuators, A 158(1):132–139

    Article  Google Scholar 

  66. Navid A, Lynch CS, Pilon L (2010) Purified and porous poly (vinylidene fluoride-trifluoroethylene) thin films for pyroelectric infrared sensing and energy harvesting. Smart Mater Struct 19(5):055006

    Article  Google Scholar 

  67. Olsen RB, Briscoe JM, Bruno DA et al (1981) A pyroelectric energy converter which employs regeneration. Ferroelectrics 38(1):975–978

    Article  Google Scholar 

  68. Zhang Q, Agbossou A, Feng Z et al (2011) Solar micro-energy harvesting with pyroelectric effect and wind flow. Sens Actuators, A 168(2):335–342

    Article  Google Scholar 

  69. Ravindran SKT, Huesgen T, Kroener M et al (2011) A self-sustaining pyroelectric energy harvester utilizing spatial thermal gradients. In: 2011 16th international solid-state sensors, actuators and microsystems conference (TRANSDUCERS)

    Google Scholar 

  70. Ravindran SKT, Kroener M, Woias P (2012) A bimetallic micro heat engine for pyroelectric energy conversion. Procedia Eng 47:33–36

    Article  Google Scholar 

  71. Sebald G, Lefeuvre E, Guyomar D (2008) Pyroelectric energy conversion: optimization principles. IEEE Trans Ultrason Ferroelectr Freq Control 55(3):538–551

    Article  Google Scholar 

  72. McKinley IM, Kandilian R, Pilon L (2012) Waste heat energy harvesting using the Olsen cycle on 0.945Pb(Zn1/3Nb2/3)O3–0.055PbTiO3 single crystals. Smart Mater Struct 21(3):035015

    Article  Google Scholar 

  73. Lee FY, Goljahi S, McKinley IM et al (2012) Pyroelectric waste heat energy harvesting using relaxor ferroelectric 8/65/35 PLZT and the Olsen cycle. Smart Mater Struct 21(2):025021

    Article  Google Scholar 

  74. Navid A, Pilon L (2011) Pyroelectric energy harvesting using Olsen cycles in purified and porous poly (vinylidene fluoride-trifluoroethylene)[P (VDF-TrFE)] thin films. Smart Mater Struct 20(2):025012

    Article  Google Scholar 

  75. Olsen RB, Brown DD (1982) High efficieincy direct conversion of heat to electrical energy-related pyroelectric measurements. Ferroelectrics 40(1):17–27

    Article  Google Scholar 

  76. Lee F (2012) Experimental and analytical studies on pyroelectric waste heat energy conversion. Master Thesis, UCLA

    Google Scholar 

  77. Sebald G, Pruvost S, Guyomar D (2008) Energy harvesting based on Ericsson pyroelectric cycles in a relaxor ferroelectric ceramic. Smart Mater Struct 17(1):015012

    Article  Google Scholar 

  78. Khodayari A, Pruvost S, Sebald G et al (2009) Nonlinear pyroelectric energy harvesting from relaxor single crystals. IEEE Trans Ultrason Ferroelectr Freq Control. 56(4):693–699

    Google Scholar 

  79. Kandilian R, Navid A, Pilon L (2011) The pyroelectric energy harvesting capabilities of PMN–PT near the morphotropic phase boundary. Smart Mater Struct 20(5):055020

    Article  Google Scholar 

  80. Cha G, Ju YS (2013) Pyroelectric energy harvesting using liquid-based switchable thermal interfaces. Sens Actuators, A 189:100–107

    Article  Google Scholar 

  81. Olsen RB, Bruno DA, Briscoe JM et al (1985) Pyroelectric conversion cycle of vinylidene fluoride-trifluoroethylene copolymer. J Appl Phys 57(11):5036–5042

    Article  Google Scholar 

  82. de Oliveira NA, von Ranke PJ, Troper A (2014) Magnetocaloric and barocaloric effects: Theoretical description and trends. Int J Refrig 37:237–248

    Article  Google Scholar 

  83. Zou JD (2012) Magnetocaloric and barocaloric effects in a Gd5Si2Ge2 compound. Chin Phys B 21(3):037503

    Article  Google Scholar 

  84. Strässle T, Furrer A, Lacorre P et al (2000) A novel principle for cooling by adiabatic pressure application in rare-earth compounds. J Alloys Compd 303–304:228–231

    Article  Google Scholar 

  85. Strässle T, Furrer A, Altorfer F et al (2001) HoAs: a model compound for the cooling by the barocaloric effect. J Alloys Compd 323–324:392–395

    Article  Google Scholar 

  86. Furrer A, Strässle T, Temprano DR (2001) New excitement with crystal-field excitations. J Alloys Compd 323–324:649–653

    Article  Google Scholar 

  87. Strässle T, Furrer A, Dönni A et al (2002) Barocaloric effect: the use of pressure for magnetic cooling in Ce3Pd20Ge6. J Appl Phys 91(10):8543

    Article  Google Scholar 

  88. Hossain Z, Strässle T, Geibel C et al (2004) First-order valence transition and barocaloric effect in EuNi2(Si1−xGex)2. J Magn Magn Mater 272–276(3):2352–2354

    Article  Google Scholar 

  89. Mañosa L, Gonzalez-Alonso D, Planes A et al (2010) Giant solid-state barocaloric effect in the Ni-Mn-In magnetic shape-memory alloy. Nat Mater 9(6):478–481

    Article  Google Scholar 

  90. De Oliveira NA (2011) Barocaloric effect and the pressure induced solid state refrigerator. J Appl Phys 109(5):053515

    Article  Google Scholar 

  91. Otsuka K (1998) Shape memory materials, C.M. Wayman (ed). Cambridge University Press, Cambridge

    Google Scholar 

  92. Shaw JA, Churchill CB, Iadicola MA (2008) Tips and tricks for characterizing shape memory alloy wire: Part 1–differential scanning calorimetry and basic phenomena. Exp Tech 32(5):55–62

    Article  Google Scholar 

  93. Jani JM, Leary M, Subic A et al (2014) A review of shape memory alloy research, applications and opportunities. Mater Design 56:1078–1113

    Article  Google Scholar 

  94. Wakjira JF (2011) The VT1 shape memory alloy heat engine design. Master Thesis, Virginia Polytechnic Institute and State University

    Google Scholar 

  95. Salzbrenner R (1984) Shape memory heat engines. J Mater Sci 19:1827–1835

    Google Scholar 

  96. McCormick PG (1986) Shape memory effect heat engine performance. Appl Energy 24:221–243

    Article  Google Scholar 

  97. Liu C, Qin H, Mather PT (2007) Review of progress in shape-memory polymers. J Mater Chem 17:1543–1558

    Article  Google Scholar 

  98. Ortin J, Planes A (1989) Thermodynamics of thermoelastic martensitic transformation. Acta Metall 37(5):1433–1441

    Article  Google Scholar 

  99. Moya X, Kar-Narayan S, Mathur ND (2014) Caloric materials near ferroic phase transitions. Nat Mater 13:439–450

    Article  Google Scholar 

  100. Rodriguez C, Brown LC (1980) The thermal effect due to stress-induced martensite formation in β-CuAINi single crystals. Metall Trans A 11A:147–150

    Google Scholar 

  101. Brown LC (1981) The thermal effect in pseudoelastic single crystals of β–CuZnSn. Metall Trans A 12A:1491–1494

    Article  Google Scholar 

  102. Mukherjee K, Sircar S, Dahotre NB (1985) Thermal effects associated with stress-induced martensitic transformation in a Ti-Ni alloy. Mater Sci Eng 74:75–84

    Article  Google Scholar 

  103. McCormick PG, Liu Y, Miyazaki S (1993) Intrinsic thermal-mechanical behaviour associated with the stress induced martensitic transformation in NiTi. Mater Sci Eng, A 167:51–56

    Article  Google Scholar 

  104. Nikitin SA, Myalikgulyev G, Annaorazov MP et al (1992) Giant elastocaloric effect in FeRh alloy. Phys Lett A 171:234–236

    Article  Google Scholar 

  105. Manosa L, Jarque-Farnos S, Vives E et al (2013) Large temperature span and giant refrigerant capacity in elastocaloric Cu-Zn-Al shape memory alloys. Appl Phys Lett 103:211904

    Article  Google Scholar 

  106. Bonnot E, Romero R, Manosa L et al (2008) Elastocaloric effect associated with the martensitic transition in shape-memory alloys. Phys Rev Lett 100:125901

    Article  Google Scholar 

  107. Vives E, Burrows S, Edwards RS et al (2011) Temperature contour maps at the strain-induced martensitic transition of a Cu–Zn–Al shape-memory single crystal. Appl Phys Lett 98:011902

    Article  Google Scholar 

  108. Cui J, Wu Y, Muehlbauer J et al (2012) Demonstration of high efficiency elastocaloric cooling with large ΔT using NiTi wires. Appl Phys Lett 101:073904

    Article  Google Scholar 

  109. Ossmer H, Chluba C, Krevet B et al (2013) Elastocaloric cooling using shape memory alloy films. J Phys: Conf Ser 476:012138

    Google Scholar 

  110. Bechtold C, Chluba C, Lima de Miranda R (2012) High cyclic stability of the elastocaloric effect in sputtered TiNiCu shape memory films. Appl Phys Lett 101:091903

    Article  Google Scholar 

  111. Xiao F, Fukuda T, Kakeshita T (2013) Significant elastocaloric effect in a Fe-31.2Pd (at. %) single crystal. Appl Phys Lett 102:161914

    Article  Google Scholar 

  112. Guyomar D, Li Y, Sebald G et al (2013) Elastocaloric modeling of natural rubber. Appl Therm Eng 57:33–38

    Article  Google Scholar 

  113. Churchill CB, Shaw JA, Iadicola MA (2010) Tips and tricks for characterizing shape memory alloy: Part 4–thermo-mechanical coupling. Exp Tech 34(2):63–80

    Article  Google Scholar 

  114. Pieczyska E (2010) Activity of stress-induced martensite transformation in TiNi shape memory alloy studied by infrared technique. J Mod Opt 57(18):1700–1707

    Article  Google Scholar 

  115. DeGregoria AJ (1994) Elastomer bed. International Patent WO 94/10517

    Google Scholar 

  116. Fischer SK, Tomlinson JJ, Hughes PJ (1994) Energy and global warming impacts of not-in-kind and next generation CFC and HCFC alternatives. Oak Ridge National Laboratory, AFEAS and US Department for Energy

    Google Scholar 

  117. Cui J, Takeuchi I, Wuttig M et al (2012) Thermoelastic cooling. US Patent Application Publication US 2012/0273158 A1

    Google Scholar 

  118. Goetzler W, Zogg R, Young J et al (2014) Energy savings potential and RD&D opportunities for non-vapor-compression HVAC technologies. Navigant Consulting Inc., prepared for U.S. Department of Energy

    Google Scholar 

  119. Chluba C, Lima-de-Miranda R, Kienle L et al (2014) On the role of precipitates for the functional fatigue in TiNiCu films. In: International conference on martensitic transformation (ICOMAT), 2014, Oral presentation

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kitanovski, A., Tušek, J., Tomc, U., Plaznik, U., Ožbolt, M., Poredoš, A. (2015). Alternative Caloric Energy Conversions. In: Magnetocaloric Energy Conversion. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-08741-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08741-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08740-5

  • Online ISBN: 978-3-319-08741-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics