Skip to main content

Self-organizing Artificial Neural Networks into Hydrographic Big Data Reduction Process

  • Conference paper
Rough Sets and Intelligent Systems Paradigms

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8537))

Abstract

The article presents the reduction problems of hydrographic big data for the needs of gathering sound information for Navigation Electronic Chart (ENC) production. For the article purposes, data was used from an interferometric sonar, which is a modification of a multi-beam sonar. Data reduction is a procedure meant to reduce the size of the data set, in order to make them easier and more effective for the purposes of the analysis. The authors‘ aim is to examine whether artificial neural networks can be used for clustering data in the resultant algorithm. Proposed solution based on Kohonen network is tested and described. Experimental results of investigation of optimal network configuration are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lubczonek, J.: Application of GIS Techniques in VTS Radar Stations Planning. In: Kawalec, A., Kaniewski, P. (eds.) 2008 International Radar Symposium, Wroclaw, pp. 277–280 (2008)

    Google Scholar 

  2. Weintrit, A., Kopacz, P.: Computational Algorithms Implemented in Marine Navigation Electronic Systems. In: Mikulski, J. (ed.) TST 2012. CCIS, vol. 329, pp. 148–158. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  3. Lubczonek, J., Stateczny, A.: Aspects of spatial planning of radar sensor network for inland waterways surveillance. In: 6th European Radar Conference (EURAD 2009). European Radar Conference-EuRAD, Rome, pp. 501–504 (2009)

    Google Scholar 

  4. Przyborski, M., Pyrchla, J.: Reliability of the navigational data. In: Kłopotek, M.A., Wierzchoń, S.T., Trojanowski, K. (eds.) Intelligent Information Processing and Web Mining. ASC, vol. 22, pp. 541–545. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  5. Stateczny, A.: Artificial neural networks for comparative navigation. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 1187–1192. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Przyborski, M.: Possible determinism and the real world data. Physica A-Statistical Mechanics and its Applications 309(3-4), 297–303 (2002)

    Article  Google Scholar 

  7. Stateczny, A.: Methods of comparative plotting of the ship’s position. In: Brebbia, C., Sciutto, G. (eds.) Maritime Engineering & Ports III, Rhodes. Water Studies Series, vol. 12, pp. 61–68 (2002)

    Google Scholar 

  8. Maleika, W., Palczynski, M., Frejlichowski, D.: Effect of Density of Measurement Points Collected from a Multibeam Echosounder on the Accuracy of a Digital Terrain Model. In: Pan, J.-S., Chen, S.-M., Nguyen, N.T. (eds.) ACIIDS 2012, Part III. LNCS (LNAI), vol. 7198, pp. 456–465. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Lubczonek, J., Stateczny, A.: Concept of neural model of the sea bottom surface. In: Rutkowski, L., Kacprzyk, J. (eds.) Neural Networks and Soft Computing. ASC, vol. 19, pp. 861–866. Physica, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Lubczonek, J.: Hybrid neural model of the sea bottom surface. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 1154–1160. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Stateczny, A.: The neural method of sea bottom shape modelling for the spatial maritime information system. In: Brebbia, C., Olivella, J. (eds.) Maritime Engineering and Ports II, Barcelona. Water Studies Series, vol. 9, pp. 251–259 (2000)

    Google Scholar 

  12. Maleika, W.: The influence of track configuration and multibeam echosounder parameters on the accuracy of seabed DTMs obtained in shallow water. Earth Science Informatics 6(2), 47–69 (2013)

    Article  Google Scholar 

  13. Stateczny, A., Kazimierski, W.: Determining Manoeuvre Detection Threshold of GRNN Filter in the Process of Tracking in Marine Navigational Radars. In: Kawalec, A., Kaniewski, P. (eds.) 2008 Proceedings International Radar Symposium, Wroclaw, pp. 242–245 (2008)

    Google Scholar 

  14. Balicki, J., Kitowski, Z., Stateczny, A.: Extended Hopfield Model of Neural Networks for Combinatorial Multiobjective Optimization Problems. In: 2nd IEEE World Congress on Computational Intelligence, Anchorage, pp. 1646–1651 (1998)

    Google Scholar 

  15. Stateczny, A., Kazimierski, W.: A comparison of the target tracking in marine navigational radars by means of GRNN filter and numerical filter. In: 2008 IEEE Radar Conference, Rome, vol. 1-4, pp. 1994–1997 (2008)

    Google Scholar 

  16. Stateczny, A., Kazimierski, W.: Selection of GRNN network parameters for the needs of state vector estimation of manoeuvring target in ARPA devices. In: Romaniuk, R.S. (ed.) Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments IV, Wilga. Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE), vol. 6159, pp. F1591–F1591(2006)

    Google Scholar 

  17. Stateczny, A.: Neural manoeuvre detection of the tracked target in ARPA systems. In: Katebi, R. (ed.) Control Applications in Marine Systems 2001 (CAMS 2001), Glasgow. IFAC Proceedings Series, pp. 209–214 (2002)

    Google Scholar 

  18. Chung, K., Huang, Y., Wang, J., et al.: Speedup of color palette indexing in self-organization of Kohonen feature map. Expert Systems with Applications 39(3), 2427–2432 (2012)

    Article  Google Scholar 

  19. Ciampi, A., Lechevallier, Y.: Multi-level Data Sets: An Approach Based on Kohonen Self Organizing Maps. In: Zighed, D.A., Komorowski, J., Żytkow, J. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 353–358. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  20. de Almeida, C., de Souza, R., Candelas, A.: Fuzzy Kohonen clustering networks for interval data. Neurocomputing 99, 65–75 (2013)

    Article  Google Scholar 

  21. Du, Z., Yang, Y., Sun, Y., et al.: Map matching Using De-Noise Interpolation Kohonen Self-Organizing Maps. In: Conference: International Conference on Components, Packaging and Manufacturing Technology, Sanya. Key Engineering Materials, vol. 460-461, pp. 680–686 (2011)

    Article  Google Scholar 

  22. Guerrero, V., Anegon, F.: Reduction of the dimension of a document space using the fuzzified output of a Kohonen network. Journal of the American Society for Information Science and Technology 52(14), 1234–1241 (2001)

    Article  Google Scholar 

  23. Rasti, J., Monadjemi, A., Vafaei, A.: Color reduction using a multi-stage Kohonen Self-Organizing Map with redundant features. Expert Systems with Applications 38(10), 13188–13197 (2011)

    Article  Google Scholar 

  24. Kohonen, T.: Self-Organized Formation of Topologically Correct Feature Maps. Biological Cybernetics 43(1), 59–69 (1982)

    Article  MathSciNet  Google Scholar 

  25. Kohonen, T.: The Self-Organizing Map. Proceedings of The IEEE 78(9), 1464–1480 (1990)

    Article  Google Scholar 

  26. Wlodarczyk-Sielicka, M.: 3D Double Buffering method in the process of hydrographic chart production with geodata taken from interferometry multibeam echo sounder. Annals of Geomantic, issue X 7(57), 101–108 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Stateczny, A., Wlodarczyk-Sielicka, M. (2014). Self-organizing Artificial Neural Networks into Hydrographic Big Data Reduction Process. In: Kryszkiewicz, M., Cornelis, C., Ciucci, D., Medina-Moreno, J., Motoda, H., RaÅ›, Z.W. (eds) Rough Sets and Intelligent Systems Paradigms. Lecture Notes in Computer Science(), vol 8537. Springer, Cham. https://doi.org/10.1007/978-3-319-08729-0_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08729-0_34

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08728-3

  • Online ISBN: 978-3-319-08729-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics