Skip to main content

Biological Applications

  • Chapter
  • First Online:
Silicon Carbide Nanostructures

Part of the book series: Engineering Materials and Processes ((EMP))

  • 1789 Accesses

Abstract

Silicon carbide is a well-known semiconductor with excellent biocompatibility and at least two factors contribute to this favorable characteristic. The first one is that the compound does not contain heavy metals which tend to be detrimental to the human body, and the second one is that neither silicon nor carbon causes deleterious effects such as cytotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ota T, Takahashi M, Hibi T, Ozawa M, Suzuki S, Hikichi Y, Suzuki H (1995) Biomimetic process for producing SiC “wood”. J Am Ceram Soc 78:3409–3411

    Article  Google Scholar 

  2. Greil P, Lifka T, Kaindl A (1998) Biomorphic cellular silicon carbide ceramics from wood: I. processing and microstructure. J Eur Ceram Soc 18:1961–1973

    Article  Google Scholar 

  3. Greil P, Lifka T, Kaindl A (1998) Biomorphic cellular silicon carbide ceramics from wood: II. mechanical properties. J Eur Ceram Soc 18:1975–1983

    Article  Google Scholar 

  4. Vogli E, Sieber H, Greil P (2002) Biomorphic SiC-ceramic prepared by Si-vapor phase infiltration of wood. J Eur Ceram Soc 22:2663–2668

    Article  Google Scholar 

  5. Vogli E, Mukerji J, Hoffman C, Kladny R, Sieber H, Greil P (2001) Conversion of oak to cellular silicon carbide ceramic by gas-phase reaction with silicon monoxide. J Am Ceram Soc 84:1236–1240

    Article  Google Scholar 

  6. Qian J-M, Wang J-P, Qiao G-J, Jin Z-H (2004) Preparation of porous SiC ceramic with a woodlike microstructure by sol-gel and carbothermal reduction processing. J Eur Ceram Soc 24:3251–3259

    Article  Google Scholar 

  7. Shin Y, Wang C, Exarhos GJ (2005) Synthesis of SiC ceramics by the carbothermal reduction of mineralized wood with silica. Adv Mater 17:73–77

    Article  Google Scholar 

  8. Martínez-Fernández J, Valera-Feria FM, Singh M (2000) High temperature compressive mechanical behavior of joined biomorphic silicon carbide ceramics. Scripta Mater 43:813–818

    Article  Google Scholar 

  9. Singh M, Salem JA (2002) Mechanical properties and microstructure of biomorphic silicon carbide ceramics fabricated from wood precursors. J Eur Ceram Soc 22:2709–2717

    Article  Google Scholar 

  10. González P, Serra J, Liste S, Chiussi S, León B, Pérez-Amor M, Martínez-Fernández J, de Arellano-López AR, Varela-Feria FM (2003) New biomorphic SiC ceramics coated with bioactive glass for biomedical applications. Biomaterials 24:4827–4832

    Article  Google Scholar 

  11. Aspenberg P, Anttila A, Konttinen YT, Lappalainen R, Goodman SB, Nordsletten L, Santavirta S (1996) Benign response to particles of diamond and SiC: bone chamber studies of new joint replacement coating materials in rabbits. Biomaterials 17:807–812

    Article  Google Scholar 

  12. Santavirta S, Takagi M, Nordsletten L, Anttila A, Lappalainen R, Konttinen YT (1998) Biocompatibility of silicon carbide in colony formation test in vitro. A promising new ceramic THR implant coating material. Arch Orthop Trauma Surg 118:89–91

    Article  Google Scholar 

  13. Cogan SF, Edell DJ, Guzelian AA, Liu YP, Edell R (2003) Plasma-enhanced chemical vapor deposited silicon carbide as an implantable dielectric coating. J Biomed Mater Res A. 67:856–867

    Article  Google Scholar 

  14. Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547–1562

    Article  Google Scholar 

  15. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544

    Article  Google Scholar 

  16. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446

    Article  Google Scholar 

  17. Derfus AM, Chan WCW, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4:11–18

    Article  Google Scholar 

  18. Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  Google Scholar 

  19. Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Persp 113:823–839

    Article  Google Scholar 

  20. Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4:26–49

    Article  Google Scholar 

  21. Fan J, Chu PK (2010) Group IV nanoparticles: synthesis, properties, and biological applications. Small 6:2080–2098

    Article  Google Scholar 

  22. Fan J, Li H, Jiang J, So LKY, Lam YW, Chu PK (2008) 3C-SiC nanocrystals as fluorescent biological labels. Small 4:1058–1062

    Article  Google Scholar 

  23. Barillet S, Simon-Deckers A, Herlin-Boime N, Mayne-L’Hermite M, Reynaud C, Cassio D, Gouget B, Carrière M (2010) Toxicological consequences of TiO2, SiC nanoparticles and multi-walled carbon nanotubes exposure in several mammalian cell types: an in vitro study. J Nanopart Res 12:61–73

    Article  Google Scholar 

  24. Barillet S, Jugan M-L, Laye M, Leconte Y, Herlin-Boime N, Reynaud C, Carrière M (2010) In vitro evaluation of SiC nanoparticles impact on A549 pulmonary cells: cyto-, genotoxicity and oxidative stress. Toxicol Lett 198:324–330

    Article  Google Scholar 

  25. Pourchez J, Forest V, Boumahdi N, Boudard D, Tomatis M, Fubini B, Herlin-Boime N, Leconte Y, Guilhot B, Cottier M, Grosseau P (2012) In vitro cellular responses to silicon carbide nanoparticles: impact of physico-chemical features on pro-inflammatory and pro-oxidative effects. J Nanopart Res 14:1143

    Article  Google Scholar 

  26. Lozano O, Laloy J, Alpan L, Mejia J, Rolin S, Toussaint O, Dogné J-M, Lucas S, Masereel B (2012) Effects of SiC nanoparticles orally administered in a rat model: biodistribution, toxicity and elemental composition changes in feces and organs. Toxicol Appl Pharm 264:232–245

    Article  Google Scholar 

  27. Serdiuk T, Lysenko V, Skryshevsky VA, Géloën A (2012) Vapor phase mediated cellular uptake of sub 5 nm nanoparticles. Nanoscale Res Lett 7:212

    Article  Google Scholar 

  28. Serdiuk T, Alekseev SA, Lysenko V, Skryshevsky VA, Géloën A (2012) Charge-driven selective localization of fluorescent nanoparticles in live cells. Nanotechnology 23:315101

    Article  Google Scholar 

  29. Serdiuk T, Lysenko V, Mognetti B, Skryshevsky V, Géloën A (2013) Impact of cell division on intracellular uptake and nuclear targeting with fluorescent SiC-based nanoparticles. J Biophotonics 6:291–297

    Article  Google Scholar 

  30. Beke D, Szekrényes Z, Pálfi D, Róna G, Balogh I, Maák PA, Katona G, Czigány Z, Kamarás K, Rózsa B, Buday L, Vértessy B, Gali A (2013) Silicon carbide quantum dots for bioimaging. J Mater Res 28:205–209

    Article  Google Scholar 

  31. Birchall JD, Stanley DR, Mockford MJ, Pigott GH, Pinto PJ (1988) Toxicity of silicon carbide whiskers. J Mater Sci Lett 7:350–352

    Article  Google Scholar 

  32. Ogami A, Morimoto Y, Yamato H, Oyabu T, Akiyama I, Tanaka I (2001) Short term effect of silicon carbide whisker to the rat lung. Ind Health 39:175–182

    Article  Google Scholar 

  33. Morimoto Y, Ding L, Oyabu T, Hirohashi M, Kim H, Ogami A, Yamato H, Akiyama I, Hori H, Higashi T, Tanak I (2003) Expression of Clara cell secretory protein in the lungs of rats exposed to silicon carbide whisker in vivo. Toxicol Lett 145:273–279

    Article  Google Scholar 

  34. Mwangi JN, Wang N, Ritts A, Kunz JL, Ingersoll CG, Li H, Deng B (2011) Toxicity of silicon carbide nanowires to sediment-dwelling invertebrates in water or sediment exposures. Environ Toxicol Chem 30:981–987

    Article  Google Scholar 

  35. Jiang J, Wang J, Zhang X, Huo K, Wong HM, Yeung KWK, Zhang W, Hu T, Chu PK (2010) Activation of mitogen-activated protein kinases cellular signal transduction pathway in mammalian cells induced by silicon carbide nanowires. Biomaterials 31:7856–7862

    Article  Google Scholar 

  36. Rosenbloom AJ, Sipe DM, Shishkin Y, Ke Y, Devaty RP, Choyke WJ (2004) Nanoporous SiC: a candidate semi-permeable material for biomedical applications. Biomed Microdevices 6:261–267

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiyang Fan .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fan, J., Chu, P.K. (2014). Biological Applications. In: Silicon Carbide Nanostructures. Engineering Materials and Processes. Springer, Cham. https://doi.org/10.1007/978-3-319-08726-9_8

Download citation

Publish with us

Policies and ethics