Skip to main content

Potential Clinical Use of Recombinant Human ADAMTS13

  • Chapter
ADAMTS13

Abstract

ADAMTS13, also known as von Willebrand factor (VWF)-cleaving protease, is a plasma enzyme that is crucial in regulating VWF activity, as it preferentially cleaves ultra-large VWF (ULVWF) multimers, which are hyperactive and potentially pro-thrombotic. Severe ADAMTS13 deficiency is associated with the development of a thrombotic microangiopathy known as thrombotic thrombocytopenic purpura (TTP). In recent years, evidence has accumulated that also mild to moderate deficiency of ADAMTS13 contributes to the development of thrombotic diseases, probably due to an increase in the concentration of ULVWF multimers. This review discusses the potential use of recombinant human ADAMTS13 (rhADAMTS13) in the treatment of clinical conditions associated with reduced levels of ADAMTS13 and/or elevated VWF to ADAMTS13 ratios. We focus on current treatment and possible replacement therapy with rhADAMTS13 in patients with severe ADAMTS13 deficiency as manifested in congenital and acquired TTP and examine the potential therapeutic use of rhADAMTS13 in cardiovascular and liver diseases and malaria, where ADAMTS13 levels are only moderately decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rangarajan S, Kessler C, Aledort L. The clinical implications of ADAMTS13 function: the perspectives of haemostaseologists. Thromb Res. 2013;132:403–7.

    CAS  PubMed  Google Scholar 

  2. Eerenberg ES, Levi M. The potential therapeutic benefit of targeting ADAMTS13 activity. Semin Thromb Hemost. 2014;40:28–33.

    CAS  PubMed  Google Scholar 

  3. Levy GG, Nichols WC, Lian EC, Foroud T, McClintick JN, McGee BM, Yang AY, Siemieniak DR, Stark KR, Gruppo R, Sarode R, Shurin SB, Chandrasekaran V, Stabler SP, Sabio H, Bouhassira EE, Upshaw Jr JD, Ginsburg D, Tsai HM. Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura. Nature. 2001;413:488–94.

    CAS  PubMed  Google Scholar 

  4. Kokame K, Matsumoto M, Soejima K, Yagi H, Ishizashi H, Funato M, Tamai H, Konno M, Kamide K, Kawano Y, Miyata T, Fujimura Y. Mutations and common polymorphisms in ADAMTS13 gene responsible for von Willebrand factor-cleaving protease activity. Proc Natl Acad Sci U S A. 2002;99:11902–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Mansouri TM, von Krogh AS, Fujimura Y, George JN, Hrachovinova I, Knöbl PN, Quist-Paulsen P, Schneppenheim R, Lämmle B, Kremer Hovinga JA. Hereditary thrombotic thrombocytopenic purpura and the hereditary TTP registry. Hamostaseologie. 2013;33:138–43.

    Google Scholar 

  6. Coppo P, Veyradier A. Current management and therapeutical perspectives in thrombotic thrombocytopenic purpura. Presse Med. 2012;41:e163–76.

    PubMed  Google Scholar 

  7. Yagi H, Matsumoto M, Fujimura Y. Paradigm shift of childhood thrombotic thrombocytopenic purpura with severe ADAMTS13 deficiency. Presse Med. 2012;41:e137–55.

    PubMed  Google Scholar 

  8. Blombery P, Scully M. Management of thrombotic thrombocytopenic purpura: current perspectives. J Blood Med. 2014;5:15–23.

    PubMed Central  PubMed  Google Scholar 

  9. Raval JS, Padmanabhan A, Kremer Hovinga JA, Kiss JE. Development of a clinically significant ADAMTS13 inhibitor in a patient with hereditary thrombotic thrombocytopenic purpura. Am J Hematol. 2015;90:E22.

    PubMed  Google Scholar 

  10. Scully M, Gattens M, Khair K, Liesner R. The use of intermediate purity factor VIII concentrate BPL 8Y as prophylaxis and treatment in congenital thrombotic thrombocytopenic purpura. Br J Haematol. 2006;135:101–4.

    PubMed  Google Scholar 

  11. Naik S, Mahoney DH. Successful treatment of congenital TTP with a novel approach using plasma-derived factor VIII. J Pediatr Hematol Oncol. 2013;35:551–3.

    PubMed  Google Scholar 

  12. Peyvandi F, Mannucci PM, Valsecchi C, Pontiggia S, Farina C, Retzios AD. ADAMTS13 content in plasma-derived factor VIII/von Willebrand factor concentrates. Am J Hematol. 2013;88:895–8.

    CAS  PubMed  Google Scholar 

  13. Qorraj M, Falter T, Steinemann S, Vigh T, Scharrer I. ADAMTS13 in 4 different VWF/VIII concentrates and its impact on therapy. Blood. 2010;116:3677.

    Google Scholar 

  14. Hiura H, Matsui T, Matsumoto M, Hori Y, Isonishi A, Kato S, Iwamoto T, Mori T, Fujimura Y. Proteolytic fragmentation and sugar chains of plasma ADAMTS13 purified by a conformation-dependent monoclonal antibody. J Biochem. 2010;148:403–11.

    CAS  PubMed  Google Scholar 

  15. Plaimauer B, Zimmermann K, Völkel D, Antoine G, Kerschbaumer R, Jenab P, Furlan M, Gerritsen H, Lämmle B, Schwarz HP, Scheiflinger F. Cloning, expression, and functional characterization of the von Willebrand factor-cleaving protease (ADAMTS13). Blood. 2002;100:3626–32.

    CAS  PubMed  Google Scholar 

  16. Scheiflinger F, Mayer C, Fiedler C, Grillberger L, Hasslacher M, Kaliwoda M, Woehrer W, Reiter M, Mitterer A, Mundt W. Development of a manufacturing process for rADAMTS13. J Thromb Haemost. 2011;9:P-TU-472.

    Google Scholar 

  17. Antoine G, Zimmermann K, Plaimauer B, Grillowitzer M, Studt JD, Lämmle B, Scheiflinger F. ADAMTS13 gene defects in two brothers with constitutional thrombotic thrombocytopenic purpura and normalization of von Willebrand factor-cleaving protease activity by recombinant human ADAMTS13. Br J Haematol. 2003;120:821–4.

    CAS  PubMed  Google Scholar 

  18. Schiviz A, Wuersch K, Piskernik C, Dietrich B, Hoellriegl W, Rottensteiner H, Scheiflinger F, Schwarz HP, Muchitsch EM. A new mouse model mimicking thrombotic thrombocytopenic purpura: correction of symptoms by recombinant human ADAMTS13. Blood. 2012;119:6128–35.

    CAS  PubMed  Google Scholar 

  19. De Meyer SF, Savchenko AS, Haas MS, Schatzberg D, Carroll MC, Schiviz A, Dietrich B, Rottensteiner H, Scheiflinger F, Wagner DD. Protective anti-inflammatory effect of ADAMTS13 on myocardial ischemia/reperfusion injury in mice. Blood. 2012;120:5217–23.

    PubMed Central  PubMed  Google Scholar 

  20. Tsai HM, Lian EC. Antibodies to von Willebrand factor-cleaving protease in acute thrombotic thrombocytopenic purpura. N Engl J Med. 1998;339:1585–94.

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Furlan M, Robles R, Galbusera M, Remuzzi G, Kyrle PA, Brenner B, Krause M, Scharrer I, Aumann V, Mittler U, Solenthaler M, Lämmle B. von Willebrand factor-cleaving protease in thrombotic thrombocytopenic purpura and the hemolytic-uremic syndrome. N Engl J Med. 1998;339:1578–84.

    CAS  PubMed  Google Scholar 

  22. Rieger M, Mannucci PM, Kremer Hovinga JA, Herzog A, Gerstenbauer G, Konetschny C, Zimmermann K, Scharrer I, Peyvandi F, Galbusera M, Remuzzi G, Böhm M, Plaimauer B, Lämmle B, Scheiflinger F. ADAMTS13 autoantibodies in patients with thrombotic microangiopathies and other immunomediated diseases. Blood. 2005;106:1262–7.

    CAS  PubMed  Google Scholar 

  23. Tsai HM, Raoufi M, Zhou W, Guinto E, Grafos N, Ranzurmal S, Greenfield RS, Rand JH. ADAMTS13-binding IgG are present in patients with thrombotic thrombocytopenic purpura. Thromb Haemost. 2006;95:886–92.

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Ferrari S, Scheiflinger F, Rieger M, Mudde G, Wolf M, Coppo P, Girma JP, Azoulay E, Brun-Buisson C, Fakhouri F, Mira JP, Oksenhendler E, Poullin P, Rondeau E, Schleinitz N, Schlemmer B, Teboul JL, Vanhille P, Vernant JP, Meyer D, Veyradier A. Prognostic value of anti-ADAMTS 13 antibody features (Ig isotype, titer, and inhibitory effect) in a cohort of 35 adult French patients undergoing a first episode of thrombotic microangiopathy with undetectable ADAMTS 13 activity. Blood. 2007;109:2815–22.

    CAS  PubMed  Google Scholar 

  25. George JN. How I treat patients with thrombotic thrombocytopenic purpura: 2010. Blood. 2010;116:4060–9.

    CAS  PubMed  Google Scholar 

  26. George JN, Al-Nouri ZL. Diagnostic and therapeutic challenges in the thrombotic thrombocytopenic purpura and hemolytic uremic syndromes. Hematology Am Soc Hematol Educ Program. 2012;2012:604–9.

    PubMed  Google Scholar 

  27. Fakhouri F, Vernant JP, Veyradier A, Wolf M, Kaplanski G, Binaut R, Rieger M, Scheiflinger F, Poullin P, Deroure B, Delarue R, Lesavre P, Vanhille P, Hermine O, Remuzzi G, Grunfeld JP. Efficiency of curative and prophylactic treatment with rituximab in ADAMTS13-deficient thrombotic thrombocytopenic purpura: a study of 11 cases. Blood. 2005;106:1932–7.

    CAS  PubMed  Google Scholar 

  28. Scully M, Cohen H, Cavenagh J, Benjamin S, Starke R, Killick S, Mackie I, Machin SJ. Remission in acute refractory and relapsing thrombotic thrombocytopenic purpura following rituximab is associated with a reduction in IgG antibodies to ADAMTS-13. Br J Haematol. 2007;136:451–61.

    CAS  PubMed  Google Scholar 

  29. Scully M, McDonald V, Cavenagh J, Hunt BJ, Longair I, Cohen H, Machin SJ. A phase 2 study of the safety and efficacy of rituximab with plasma exchange in acute acquired thrombotic thrombocytopenic purpura. Blood. 2011;118:1746–53.

    CAS  PubMed  Google Scholar 

  30. Westwood JP, Webster H, McGuckin S, McDonald V, Machin SJ, Scully M. Rituximab for thrombotic thrombocytopenic purpura: benefit of early administration during acute episodes and use of prophylaxis to prevent relapse. J Thromb Haemost. 2013;11:481–90.

    CAS  PubMed  Google Scholar 

  31. Kremer Hovinga JA, Meyer SC. Current management of thrombotic thrombocytopenic purpura. Curr Opin Hematol. 2008;15:445–50.

    PubMed  Google Scholar 

  32. Knöbl PN. Treatment of thrombotic microangiopathy with a focus on new treatment options. Hamostaseologie. 2013;33:149–59.

    PubMed  Google Scholar 

  33. Plaimauer B, Kremer Hovinga JA, Juno C, Wolfsegger MJ, Skalicky S, Schmidt M, Grillberger L, Hasslacher M, Knöbl P, Ehrlich H, Scheiflinger F. Recombinant ADAMTS13 normalizes von Willebrand factor-cleaving activity in plasma of acquired TTP patients by overriding inhibitory antibodies. J Thromb Haemost. 2011;9:936–44.

    CAS  PubMed  Google Scholar 

  34. Schiviz A, Plaimauer B, Kaufmann S, Skalicky S, Hoebarth G, Wolfsegger MJ, Muchitsch EM, Turecek PL, Scheiflinger F, Rottensteiner H. A rat model reveals feasibility of rADAMTS13 therapy in the presence of inhibitory antibodies. J Thromb Haemost. 2013;11:PA 4.06-5.

    Google Scholar 

  35. Grillberger R, Gruber B, Skalicky S, Schrenk G, Knöbl P, Plaimauer B, Turecek PL, Scheiflinger F, Rottensteiner H. A novel flow-based assay reveals discrepancies in ADAMTS13-inhibitor assessment compared to a conventional clinical static assay. J Thromb Haemost. 2014. 12:1523–32.

    Google Scholar 

  36. Jian C, Xiao J, Gong L, Skipwith CG, Jin SY, Kwaan HC, Zheng XL. Gain-of-function ADAMTS13 variants that are resistant to autoantibodies against ADAMTS13 in patients with acquired thrombotic thrombocytopenic purpura. Blood. 2012;119:3836–43.

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Klaus C, Plaimauer B, Studt JD, Dorner F, Lämmle B, Mannucci PM, Scheiflinger F. Epitope mapping of ADAMTS13 autoantibodies in acquired thrombotic thrombocytopenic purpura. Blood. 2004;103:4514–9.

    CAS  PubMed  Google Scholar 

  38. Vanhoorelbeke K, De Meyer SF. Animal models for thrombotic thrombocytopenic purpura. J Thromb Haemost. 2013;11 Suppl 1:2–10.

    PubMed  Google Scholar 

  39. Chen J, Reheman A, Gushiken FC, Nolasco L, Fu X, Moake JL, Ni H, Lopez JA. N-acetylcysteine reduces the size and activity of von Willebrand factor in human plasma and mice. J Clin Invest. 2011;121:593–603.

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Li GW, Rambally S, Kamboj J, Reilly S, Moake JL, Udden MM, Mims MP. Treatment of refractory thrombotic thrombocytopenic purpura with N-acetylcysteine: a case report. Transfusion. 2014;54:1221–4.

    CAS  PubMed  Google Scholar 

  41. Gilbert JC, Feo-Fraulini T, Hutabarat RM, Horvath CJ, Merlino PG, Marsh HN, Healy JM, Boufakhreddine S, Holohan TV, Schaub RG. First-in-human evaluation of anti von Willebrand factor therapeutic aptamer ARC1779 in healthy volunteers. Circulation. 2007;116:2678–86.

    CAS  PubMed  Google Scholar 

  42. Knöbl P, Jilma B, Gilbert JC, Hutabarat RM, Wagner PG, Jilma-Stohlawetz P. Anti-von Willebrand factor aptamer ARC1779 for refractory thrombotic thrombocytopenic purpura. Transfusion. 2009;49:2181–5.

    PubMed  Google Scholar 

  43. Mayr FB, Knobl P, Jilma B, Siller-Matula JM, Wagner PG, Schaub RG, Gilbert JC, Jilma-Stohlawetz P. The aptamer ARC1779 blocks von Willebrand factor-dependent platelet function in patients with thrombotic thrombocytopenic purpura ex vivo. Transfusion. 2010;50:1079–87.

    CAS  PubMed  Google Scholar 

  44. Jilma-Stohlawetz P, Gorczyca ME, Jilma B, Siller-Matula J, Gilbert JC, Knöbl P. Inhibition of von Willebrand factor by ARC1779 in patients with acute thrombotic thrombocytopenic purpura. Thromb Haemost. 2011;105:545–52.

    CAS  PubMed  Google Scholar 

  45. Jilma-Stohlawetz P, Gilbert JC, Gorczyca ME, Knöbl P, Jilma B. A dose ranging phase I/II trial of the von Willebrand factor inhibiting aptamer ARC1779 in patients with congenital thrombotic thrombocytopenic purpura. Thromb Haemost. 2011;106:539–47.

    PubMed  Google Scholar 

  46. Cataland SR, Peyvandi F, Mannucci PM, Lämmle B, Kremer Hovinga JA, Machin SJ, Scully M, Rock G, Gilbert JC, Yang S, Wu H, Jilma B, Knoebl P. Initial experience from a double-blind, placebo-controlled, clinical outcome study of ARC1779 in patients with thrombotic thrombocytopenic purpura. Am J Hematol. 2012;87:430–2.

    CAS  PubMed  Google Scholar 

  47. Feys HB, Roodt J, Vandeputte N, Pareyn I, Mottl H, Hou S, Lamprecht S, Van Rensburg WJ, Deckmyn H, Vanhoorelbeke K. Inhibition of von Willebrand factor-platelet glycoprotein Ib interaction prevents and reverses symptoms of acute acquired thrombotic thrombocytopenic purpura in baboons. Blood. 2012;120:3611–4.

    CAS  PubMed  Google Scholar 

  48. Callewaert F, Roodt J, Ulrichts H, Stohr T, Van Rensburg WJ, Lamprecht S, Rossenu S, Priem S, Willems W, Holz JB. Evaluation of efficacy and safety of the anti-VWF Nanobody ALX-0681 in a preclinical baboon model of acquired thrombotic thrombocytopenic purpura. Blood. 2012;120:3603–10.

    CAS  PubMed  Google Scholar 

  49. Tersteeg C, de Maat S, De Meyer SF, Smeets MW, Barendrecht AD, Roest M, Pasterkamp G, Fijnheer R, Vanhoorelbeke K, de Groot PG, Maas C. Plasmin cleavage of von Willebrand factor as an emergency bypass for ADAMTS13 deficiency in thrombotic microangiopathy. Circulation. 2014;129:1320–31.

    CAS  PubMed  Google Scholar 

  50. Donnan GA, Fisher M, Macleod M, Davis SM. Stroke. Lancet. 2008;371:1612–23.

    CAS  PubMed  Google Scholar 

  51. Wardlaw JM, White PM. The detection and management of unruptured intracranial aneurysms. Brain. 2000;123(Pt 2):205–21.

    PubMed  Google Scholar 

  52. van Schie MC, de Maat MP, Dippel DW, de Groot PG, Lenting PJ, Leebeek FW, Hollestelle MJ. von Willebrand factor propeptide and the occurrence of a first ischemic stroke. J Thromb Haemost. 2010;8:1424–6.

    PubMed  Google Scholar 

  53. Bongers TN, de Maat MP, van Goor ML, Bhagwanbali V, van Vliet HH, Gomez Garcia EB, Dippel DW, Leebeek FW. High von Willebrand factor levels increase the risk of first ischemic stroke: influence of ADAMTS13, inflammation, and genetic variability. Stroke. 2006;37:2672–7.

    CAS  PubMed  Google Scholar 

  54. Bongers TN, de Bruijne EL, Dippel DW, de Jong AJ, Deckers JW, Poldermans D, de Maat MP, Leebeek FW. Lower levels of ADAMTS13 are associated with cardiovascular disease in young patients. Atherosclerosis. 2009;207:250–4.

    CAS  PubMed  Google Scholar 

  55. Wieberdink RG, van Schie MC, Koudstaal PJ, Hofman A, Witteman JC, de Maat MP, Leebeek FW, Breteler MM. High von Willebrand factor levels increase the risk of stroke: the Rotterdam study. Stroke. 2010;41:2151–6.

    CAS  PubMed  Google Scholar 

  56. Hanson E, Jood K, Karlsson S, Nilsson S, Blomstrand C, Jern C. Plasma levels of von Willebrand factor in the etiologic subtypes of ischemic stroke. J Thromb Haemost. 2011;9:275–81.

    CAS  PubMed  Google Scholar 

  57. Carter AM, Catto AJ, Mansfield MW, Bamford JM, Grant PJ. Predictive variables for mortality after acute ischemic stroke. Stroke. 2007;38:1873–80.

    PubMed  Google Scholar 

  58. Lambers M, Goldenberg NA, Kenet G, Kirkham FJ, Manner D, Bernard T, Mesters RM, Junker R, Stoll M, Nowak-Gottl U. Role of reduced ADAMTS13 in arterial ischemic stroke: a pediatric cohort study. Ann Neurol. 2013;73:58–64.

    PubMed Central  CAS  PubMed  Google Scholar 

  59. Andersson HM, Siegerink B, Luken BM, Crawley JT, Algra A, Lane DA, Rosendaal FR. High VWF, low ADAMTS13, and oral contraceptives increase the risk of ischemic stroke and myocardial infarction in young women. Blood. 2012;119:1555–60.

    CAS  PubMed  Google Scholar 

  60. Sonneveld MA, de Maat MP, Leebeek FW. Von Willebrand factor and ADAMTS13 in arterial thrombosis: a systematic review and meta-analysis. Blood Rev. 2014;28:167–78.

    Google Scholar 

  61. van Schie MC, van Loon JE, de Maat MP, Leebeek FW. Genetic determinants of von Willebrand factor levels and activity in relation to the risk of cardiovascular disease: a review. J Thromb Haemost. 2011;9:899–908.

    PubMed  Google Scholar 

  62. Hanson E, Jood K, Nilsson S, Blomstrand C, Jern C. Association between genetic variation at the ADAMTS13 locus and ischemic stroke. J Thromb Haemost. 2009;7:2147–8.

    CAS  PubMed  Google Scholar 

  63. Arning A, Hiersche M, Witten A, Kurlemann G, Kurnik K, Manner D, Stoll M, Nowak-Gottl U. A genome-wide association study identifies a gene network of ADAMTS genes in the predisposition to pediatric stroke. Blood. 2012;120:5231–6.

    CAS  PubMed  Google Scholar 

  64. Canazza A, Minati L, Boffano C, Parati E, Binks S. Experimental models of brain ischemia: a review of techniques, magnetic resonance imaging, and investigational cell-based therapies. Front Neurol. 2014;5:19.

    PubMed Central  PubMed  Google Scholar 

  65. De Meyer SF, Schwarz T, Deckmyn H, Denis CV, Nieswandt B, Stoll G, Vanhoorelbeke K, Kleinschnitz C. Binding of von Willebrand factor to collagen and glycoprotein Ibalpha, but not to glycoprotein IIb/IIIa, contributes to ischemic stroke in mice-brief report. Arterioscler Thromb Vasc Biol. 2010;30:1949–51.

    PubMed  Google Scholar 

  66. Zhao BQ, Chauhan AK, Canault M, Patten IS, Yang JJ, Dockal M, Scheiflinger F, Wagner DD. von Willebrand factor-cleaving protease ADAMTS13 reduces ischemic brain injury in experimental stroke. Blood. 2009;114:3329–34.

    PubMed Central  CAS  PubMed  Google Scholar 

  67. Kleinschnitz C, De Meyer SF, Schwarz T, Austinat M, Vanhoorelbeke K, Nieswandt B, Deckmyn H, Stoll G. Deficiency of von Willebrand factor protects mice from ischemic stroke. Blood. 2009;113:3600–3.

    CAS  PubMed  Google Scholar 

  68. Fujioka M, Hayakawa K, Mishima K, Kunizawa A, Irie K, Higuchi S, Nakano T, Muroi C, Fukushima H, Sugimoto M, Banno F, Kokame K, Miyata T, Fujiwara M, Okuchi K, Nishio K. ADAMTS13 gene deletion aggravates ischemic brain damage: a possible neuroprotective role of ADAMTS13 by ameliorating postischemic hypoperfusion. Blood. 2010;115:1650–3.

    CAS  PubMed  Google Scholar 

  69. Khan MM, Motto DG, Lentz SR, Chauhan AK. ADAMTS13 reduces VWF-mediated acute inflammation following focal cerebral ischemia in mice. J Thromb Haemost. 2012;10:1665–71.

    PubMed Central  CAS  PubMed  Google Scholar 

  70. Fujioka M, Nakano T, Hayakawa K, Irie K, Akitake Y, Sakamoto Y, Mishima K, Muroi C, Yonekawa Y, Banno F, Kokame K, Miyata T, Nishio K, Okuchi K, Iwasaki K, Fujiwara M, Siesjo BK. ADAMTS13 gene deletion enhances plasma high-mobility group box1 elevation and neuroinflammation in brain ischemia-reperfusion injury. Neurol Sci. 2012;33:1107–15.

    PubMed  Google Scholar 

  71. Tauchi R, Imagama S, Ohgomori T, Natori T, Shinjo R, Ishiguro N, Kadomatsu K. ADAMTS-13 is produced by glial cells and upregulated after spinal cord injury. Neurosci Lett. 2012;517:1–6.

    CAS  PubMed  Google Scholar 

  72. Vergouwen MD, Vermeulen M, Coert BA, Stroes ES, Roos YB. Microthrombosis after aneurysmal subarachnoid hemorrhage: an additional explanation for delayed cerebral ischemia. J Cereb Blood Flow Metab. 2008;28:1761–70.

    PubMed  Google Scholar 

  73. Cahill J, Zhang JH. Subarachnoid hemorrhage: is it time for a new direction? Stroke. 2009;40:S86–7.

    PubMed Central  PubMed  Google Scholar 

  74. Vergouwen MD, Bakhtiari K, van Geloven N, Vermeulen M, Roos YB, Meijers JC. Reduced ADAMTS13 activity in delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2009;29:1734–41.

    CAS  PubMed  Google Scholar 

  75. Wardlaw JM, Murray V, Berge E, del Zoppo G, Sandercock P, Lindley RL, Cohen G. Recombinant tissue plasminogen activator for acute ischaemic stroke: an updated systematic review and meta-analysis. Lancet. 2012;379:2364–72.

    PubMed Central  CAS  PubMed  Google Scholar 

  76. Seet RC, Rabinstein AA. Symptomatic intracranial hemorrhage following intravenous thrombolysis for acute ischemic stroke: a critical review of case definitions. Cerebrovasc Dis. 2012;34:106–14.

    PubMed  Google Scholar 

  77. Eissa A, Krass I, Bajorek BV. Optimizing the management of acute ischaemic stroke: a review of the utilization of intravenous recombinant tissue plasminogen activator (tPA). J Clin Pharm Ther. 2012;37:620–9.

    CAS  PubMed  Google Scholar 

  78. Chauhan AK, Motto DG, Lamb CB, Bergmeier W, Dockal M, Plaimauer B, Scheiflinger F, Ginsburg D, Wagner DD. Systemic antithrombotic effects of ADAMTS13. J Exp Med. 2006;203:767–76.

    PubMed Central  CAS  PubMed  Google Scholar 

  79. Crescente M, Thomas GM, Demers M, Voorhees JR, Wong SL, Ho-Tin-Noe B, Wagner DD. ADAMTS13 exerts a thrombolytic effect in microcirculation. Thromb Haemost. 2012;108:527–32.

    PubMed Central  CAS  PubMed  Google Scholar 

  80. Lakhan SE, Kirchgessner A, Tepper D, Leonard A. Matrix metalloproteinases and blood-brain barrier disruption in acute ischemic stroke. Front Neurol. 2013;4:32.

    PubMed Central  CAS  PubMed  Google Scholar 

  81. Wang L, Fan W, Cai P, Fan M, Zhu X, Dai Y, Sun C, Cheng Y, Zheng P, Zhao BQ. Recombinant ADAMTS13 reduces tissue plasminogen activator-induced hemorrhage after stroke in mice. Ann Neurol. 2013;73:189–98.

    CAS  PubMed  Google Scholar 

  82. Muroi C, Fujioka M, Mishima K, Irie K, Fujimura Y, Nakano T, Fandino J, Keller E, Iwasaki K, Fujiwara M. Effect of ADAMTS13 on cerebrovascular microthrombosis and neuronal injury after experimental subarachnoid hemorrhage. J Thromb Haemost. 2014;12:505–14.

    CAS  PubMed  Google Scholar 

  83. Vergouwen MD, Knaup VL, Roelofs JJ, de Boer OJ, Meijers JC. Effect of recombinant ADAMTS13 on microthrombosis and brain injury after experimental subarachnoid hemorrhage. J Thromb Haemost. 2014;12:943–7.

    CAS  PubMed  Google Scholar 

  84. Hausenloy DJ, Yellon DM. Myocardial ischemia-reperfusion injury: a neglected therapeutic target. J Clin Invest. 2013;123:92–100.

    PubMed Central  CAS  PubMed  Google Scholar 

  85. Kaikita K, Soejima K, Matsukawa M, Nakagaki T, Ogawa H. Reduced von Willebrand factor-cleaving protease (ADAMTS13) activity in acute myocardial infarction. J Thromb Haemost. 2006;4:2490–3.

    CAS  PubMed  Google Scholar 

  86. Matsukawa M, Kaikita K, Soejima K, Fuchigami S, Nakamura Y, Honda T, Tsujita K, Nagayoshi Y, Kojima S, Shimomura H, Sugiyama S, Fujimoto K, Yoshimura M, Nakagaki T, Ogawa H. Serial changes in von Willebrand factor-cleaving protease (ADAMTS13) and prognosis after acute myocardial infarction. Am J Cardiol. 2007;100:758–63.

    CAS  PubMed  Google Scholar 

  87. Horii M, Uemura S, Uemura M, Matsumoto M, Ishizashi H, Imagawa K, Iwama H, Takeda Y, Kawata H, Nakajima T, Fujimura Y, Saito Y. Acute myocardial infarction as a systemic prothrombotic condition evidenced by increased von Willebrand factor protein over ADAMTS13 activity in coronary and systemic circulation. Heart Vessels. 2008;23:301–7.

    PubMed  Google Scholar 

  88. Fuchigami S, Kaikita K, Soejima K, Matsukawa M, Honda T, Tsujita K, Nagayoshi Y, Kojima S, Nakagaki T, Sugiyama S, Ogawa H. Changes in plasma von Willebrand factor-cleaving protease (ADAMTS13) levels in patients with unstable angina. Thromb Res. 2008;122:618–23.

    CAS  PubMed  Google Scholar 

  89. Peyvandi F, Hollestelle MJ, Palla R, Merlini PA, Feys HB, Vanhoorelbeke K, Lenting PJ, Mannucci PM. Active platelet-binding conformation of plasma von Willebrand factor in young women with acute myocardial infarction. J Thromb Haemost. 2010;8:1653–6.

    CAS  PubMed  Google Scholar 

  90. Chion CK, Doggen CJ, Crawley JT, Lane DA, Rosendaal FR. ADAMTS13 and von Willebrand factor and the risk of myocardial infarction in men. Blood. 2007;109:1998–2000.

    CAS  PubMed  Google Scholar 

  91. Crawley JT, Lane DA, Woodward M, Rumley A, Lowe GD. Evidence that high von Willebrand factor and low ADAMTS-13 levels independently increase the risk of a non-fatal heart attack. J Thromb Haemost. 2008;6:583–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  92. Chauhan AK, Kisucka J, Brill A, Walsh MT, Scheiflinger F, Wagner DD. ADAMTS13: a new link between thrombosis and inflammation. J Exp Med. 2008;205:2065–74.

    PubMed Central  CAS  PubMed  Google Scholar 

  93. Gandhi C, Motto DG, Jensen M, Lentz SR, Chauhan AK. ADAMTS13 deficiency exacerbates VWF-dependent acute myocardial ischemia/reperfusion injury in mice. Blood. 2012;120:5224–30.

    PubMed Central  CAS  PubMed  Google Scholar 

  94. Doi M, Matsui H, Takeda H, Saito Y, Takeda M, Matsunari Y, Nishio K, Shima M, Banno F, Akiyama M, Kokame K, Miyata T, Sugimoto M. ADAMTS13 safeguards the myocardium in a mouse model of acute myocardial infarction. Thromb Haemost. 2012;108:1236–8.

    PubMed  Google Scholar 

  95. Savchenko AS, Borissoff JI, Martinod K, De Meyer SF, Gallant M, Erpenbeck L, Brill A, Wang Y, Wagner DD. VWF-mediated leukocyte recruitment with chromatin decondensation by PAD4 increases myocardial ischemia/reperfusion injury in mice. Blood. 2014;123:141–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  96. Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature. 2011;473:317–25.

    CAS  PubMed  Google Scholar 

  97. Mannucci PM, Canciani MT, Forza I, Lussana F, Lattuada A, Rossi E. Changes in health and disease of the metalloprotease that cleaves von Willebrand factor. Blood. 2001;98:2730–5.

    CAS  PubMed  Google Scholar 

  98. Reiter RA, Varadi K, Turecek PL, Jilma B, Knöbl P. Changes in ADAMTS13 (von-Willebrand-factor-cleaving protease) activity after induced release of von Willebrand factor during acute systemic inflammation. Thromb Haemost. 2005;93:554–8.

    CAS  PubMed  Google Scholar 

  99. Kremer Hovinga JA, Zeerleder S, Kessler P, de Romani WT, van Mourik JA, Hack CE, ten Cate H, Reitsma PH, Wuillemin WA, Lammle B. ADAMTS-13, von Willebrand factor and related parameters in severe sepsis and septic shock. J Thromb Haemost. 2007;5:2284–90.

    CAS  PubMed  Google Scholar 

  100. Martin K, Borgel D, Lerolle N, Feys HB, Trinquart L, Vanhoorelbeke K, Deckmyn H, Legendre P, Diehl JL, Baruch D. Decreased ADAMTS-13 (a disintegrin-like and metalloprotease with thrombospondin type 1 repeats) is associated with a poor prognosis in sepsis-induced organ failure. Crit Care Med. 2007;35:2375–82.

    CAS  PubMed  Google Scholar 

  101. Claus RA, Bockmeyer CL, Budde U, Kentouche K, Sossdorf M, Hilberg T, Schneppenheim R, Reinhart K, Bauer M, Brunkhorst FM, Losche W. Variations in the ratio between von Willebrand factor and its cleaving protease during systemic inflammation and association with severity and prognosis of organ failure. Thromb Haemost. 2009;101:239–47.

    CAS  PubMed  Google Scholar 

  102. Ono T, Mimuro J, Madoiwa S, Soejima K, Kashiwakura Y, Ishiwata A, Takano K, Ohmori T, Sakata Y. Severe secondary deficiency of von Willebrand factor-cleaving protease (ADAMTS13) in patients with sepsis-induced disseminated intravascular coagulation: its correlation with development of renal failure. Blood. 2006;107:528–34.

    CAS  PubMed  Google Scholar 

  103. Lerolle N, Dunois-Larde C, Badirou I, Motto DG, Hill G, Bruneval P, Diehl JL, Denis CV, Baruch D. von Willebrand factor is a major determinant of ADAMTS-13 decrease during mouse sepsis induced by cecum ligation and puncture. J Thromb Haemost. 2009;7:843–50.

    CAS  PubMed  Google Scholar 

  104. Bockmeyer CL, Reuken PA, Simon TP, Budde U, Losche W, Bauer M, Birschmann I, Becker JU, Marx G, Claus RA. ADAMTS13 activity is decreased in a septic porcine model. Significance for glomerular thrombus deposition. Thromb Haemost. 2011;105:145–53.

    CAS  PubMed  Google Scholar 

  105. Gandhi C, Khan MM, Lentz SR, Chauhan AK. ADAMTS13 reduces vascular inflammation and the development of early atherosclerosis in mice. Blood. 2012;119:2385–91.

    PubMed Central  CAS  PubMed  Google Scholar 

  106. Jin SY, Tohyama J, Bauer RC, Cao NN, Rader DJ, Zheng XL. Genetic ablation of Adamts13 gene dramatically accelerates the formation of early atherosclerosis in a murine model. Arterioscler Thromb Vasc Biol. 2012;32:1817–23.

    CAS  PubMed  Google Scholar 

  107. Methia N, Andre P, Denis CV, Economopoulos M, Wagner DD. Localized reduction of atherosclerosis in von Willebrand factor-deficient mice. Blood. 2001;98:1424–8.

    CAS  PubMed  Google Scholar 

  108. Gandhi C, Ahmad A, Wilson KM, Chauhan AK. ADAMTS13 modulates atherosclerotic plaque progression in mice via a VWF-dependent mechanism. J Thromb Haemost. 2014;12:255–60.

    CAS  PubMed  Google Scholar 

  109. Tripodi A, Mannucci PM. The coagulopathy of chronic liver disease. N Engl J Med. 2011;365:147–56.

    CAS  PubMed  Google Scholar 

  110. Uemura M, Fujimura Y, Ko S, Matsumoto M, Nakajima Y, Fukui H. Pivotal role of ADAMTS13 function in liver diseases. Int J Hematol. 2010;91:20–9.

    CAS  PubMed  Google Scholar 

  111. Uemura M, Fujimura Y, Matsumoto M, Ishizashi H, Kato S, Matsuyama T, Isonishi A, Ishikawa M, Yagita M, Morioka C, Yoshiji H, Tsujimoto T, Kurumatani N, Fukui H. Comprehensive analysis of ADAMTS13 in patients with liver cirrhosis. Thromb Haemost. 2008;99:1019–29.

    CAS  PubMed  Google Scholar 

  112. Lisman T, Bongers TN, Adelmeijer J, Janssen HL, de Maat MP, de Groot PG, Leebeek FW. Elevated levels of von Willebrand Factor in cirrhosis support platelet adhesion despite reduced functional capacity. Hepatology. 2006;44:53–61.

    CAS  PubMed  Google Scholar 

  113. Feys HB, Canciani MT, Peyvandi F, Deckmyn H, Vanhoorelbeke K, Mannucci PM. ADAMTS13 activity to antigen ratio in physiological and pathological conditions associated with an increased risk of thrombosis. Br J Haematol. 2007;138:534–40.

    CAS  PubMed  Google Scholar 

  114. Takaya H, Uemura M, Fujimura Y, Matsumoto M, Matsuyama T, Kato S, Morioka C, Ishizashi H, Hori Y, Fujimoto M, Tsujimoto T, Kawaratani H, Toyohara M, Kurumatani N, Fukui H. ADAMTS13 activity may predict the cumulative survival of patients with liver cirrhosis in comparison with the Child-Turcotte-Pugh score and the Model for End-Stage Liver Disease score. Hepatol Res. 2012;42:459–72.

    PubMed  Google Scholar 

  115. Uemura M, Fujimura Y, Matsuyama T, Matsumoto M, Ishikawa M, Ishizashi H, Kato S, Tsujimoto T, Fujimoto M, Yoshiji H, Morioka C, Fukui H. Potential role of ADAMTS13 in the progression of alcoholic hepatitis. Curr Drug Abuse Rev. 2008;1:188–96.

    CAS  PubMed  Google Scholar 

  116. Ferlitsch M, Reiberger T, Hoke M, Salzl P, Schwengerer B, Ulbrich G, Payer BA, Trauner M, Peck-Radosavljevic M, Ferlitsch A. von Willebrand factor as new noninvasive predictor of portal hypertension, decompensation and mortality in patients with liver cirrhosis. Hepatology. 2012;56:1439–47.

    CAS  PubMed  Google Scholar 

  117. La Mura V, Reverter JC, Flores-Arroyo A, Raffa S, Reverter E, Seijo S, Abraldes JG, Bosch J, Garcia-Pagan JC. Von Willebrand factor levels predict clinical outcome in patients with cirrhosis and portal hypertension. Gut. 2011;60:1133–8.

    PubMed  Google Scholar 

  118. Hugenholtz GC, Adelmeijer J, Meijers JC, Porte RJ, Stravitz RT, Lisman T. An unbalance between von Willebrand factor and ADAMTS13 in acute liver failure: implications for hemostasis and clinical outcome. Hepatology. 2013;58:752–61.

    CAS  PubMed  Google Scholar 

  119. Park YD, Yoshioka A, Kawa K, Ishizashi H, Yagi H, Yamamoto Y, Matsumoto M, Fujimura Y. Impaired activity of plasma von Willebrand factor-cleaving protease may predict the occurrence of hepatic veno-occlusive disease after stem cell transplantation. Bone Marrow Transplant. 2002;29:789–94.

    PubMed  Google Scholar 

  120. Matsumoto M, Kawa K, Uemura M, Kato S, Ishizashi H, Isonishi A, Yagi H, Park YD, Takeshima Y, Kosaka Y, Hara H, Kai S, Kanamaru A, Fukuhara S, Hino M, Sako M, Hiraoka A, Ogawa H, Hara J, Fujimura Y. Prophylactic fresh frozen plasma may prevent development of hepatic VOD after stem cell transplantation via ADAMTS13-mediated restoration of von Willebrand factor plasma levels. Bone Marrow Transplant. 2007;40:251–9.

    CAS  PubMed  Google Scholar 

  121. Uemura M, Matsuyama T, Ishikawa M, Fujimoto M, Kojima H, Sakurai S, Ishii S, Toyohara M, Yamazaki M, Yoshiji H, Yamao J, Matsumoto M, Ishizashi H, Fujimura Y, Fukui H. Decreased activity of plasma ADAMTS13 may contribute to the development of liver disturbance and multiorgan failure in patients with alcoholic hepatitis. Alcohol Clin Exp Res. 2005;29:264S–71.

    CAS  PubMed  Google Scholar 

  122. Matsuyama T, Uemura M, Ishikawa M, Matsumoto M, Ishizashi H, Kato S, Morioka C, Fujimoto M, Kojima H, Yoshiji H, Takimura C, Fujimura Y, Fukui H. Increased von Willebrand factor over decreased ADAMTS13 activity may contribute to the development of liver disturbance and multiorgan failure in patients with alcoholic hepatitis. Alcohol Clin Exp Res. 2007;31:S27–35.

    PubMed  Google Scholar 

  123. Ishikawa M, Uemura M, Matsuyama T, Matsumoto M, Ishizashi H, Kato S, Morioka C, Fujimoto M, Kojima H, Yoshiji H, Tsujimoto T, Takimura C, Fujimura Y, Fukui H. Potential role of enhanced cytokinemia and plasma inhibitor on the decreased activity of plasma ADAMTS13 in patients with alcoholic hepatitis: relationship to endotoxemia. Alcohol Clin Exp Res. 2010;34 Suppl 1:S25–33.

    CAS  PubMed  Google Scholar 

  124. Mackie I, Eapen CE, Neil D, Lawrie AS, Chitolie A, Shaw JC, Elias E. Idiopathic noncirrhotic intrahepatic portal hypertension is associated with sustained ADAMTS13 Deficiency. Dig Dis Sci. 2011;56:2456–65.

    CAS  PubMed  Google Scholar 

  125. Ko S, Okano E, Kanehiro H, Matsumoto M, Ishizashi H, Uemura M, Fujimura Y, Tanaka K, Nakajima Y. Plasma ADAMTS13 activity may predict early adverse events in living donor liver transplantation: observations in 3 cases. Liver Transpl. 2006;12:859–69.

    PubMed  Google Scholar 

  126. Kobayashi T, Wada H, Usui M, Sakurai H, Matsumoto T, Nobori T, Katayama N, Uemoto S, Ishizashi H, Matsumoto M, Fujimura Y, Isaji S. Decreased ADAMTS13 levels in patients after living donor liver transplantation. Thromb Res. 2009;124:541–5.

    CAS  PubMed  Google Scholar 

  127. Pereboom IT, Adelmeijer J, van Leeuwen Y, Hendriks HG, Porte RJ, Lisman T. Development of a severe von Willebrand factor/ADAMTS13 dysbalance during orthotopic liver transplantation. Am J Transplant. 2009;9:1189–96.

    CAS  PubMed  Google Scholar 

  128. Takahashi N, Wada H, Usui M, Kobayashi T, Habe-Ito N, Matsumoto T, Uemoto S, Nobori T, Isaji S. Behavior of ADAMTS13 and Von Willebrand factor levels in patients after living donor liver transplantation. Thromb Res. 2013;131:225–9.

    CAS  PubMed  Google Scholar 

  129. Okano E, Ko S, Kanehiro H, Matsumoto M, Fujimura Y, Nakajima Y. ADAMTS13 activity decreases after hepatectomy, reflecting a postoperative liver dysfunction. Hepatogastroenterology. 2010;57:316–20.

    CAS  PubMed  Google Scholar 

  130. Kume Y, Ikeda H, Inoue M, Tejima K, Tomiya T, Nishikawa T, Watanabe N, Ichikawa T, Kaneko M, Okubo S, Yokota H, Omata M, Fujiwara K, Yatomi Y. Hepatic stellate cell damage may lead to decreased plasma ADAMTS13 activity in rats. FEBS Lett. 2007;581:1631–4.

    CAS  PubMed  Google Scholar 

  131. Niiya M, Uemura M, Zheng XW, Pollak ES, Dockal M, Scheiflinger F, Wells RG, Zheng XL. Increased ADAMTS-13 proteolytic activity in rat hepatic stellate cells upon activation in vitro and in vivo. J Thromb Haemost. 2006;4:1063–70.

    PubMed Central  CAS  PubMed  Google Scholar 

  132. Watanabe N, Ikeda H, Kume Y, Satoh Y, Kaneko M, Takai D, Tejima K, Nagamine M, Mashima H, Tomiya T, Noiri E, Omata M, Matsumoto M, Fujimura Y, Yatomi Y. Increased production of ADAMTS13 in hepatic stellate cells contributes to enhanced plasma ADAMTS13 activity in rat models of cholestasis and steatohepatitis. Thromb Haemost. 2009;102:389–96.

    CAS  PubMed  Google Scholar 

  133. Uemura M, Tatsumi K, Matsumoto M, Fujimoto M, Matsuyama T, Ishikawa M, Iwamoto TA, Mori T, Wanaka A, Fukui H, Fujimura Y. Localization of ADAMTS13 to the stellate cells of human liver. Blood. 2005;106:922–4.

    CAS  PubMed  Google Scholar 

  134. Lisman T, Porte RJ. Rebalanced hemostasis in patients with liver disease: evidence and clinical consequences. Blood. 2010;116:878–85.

    CAS  PubMed  Google Scholar 

  135. Uemura M, Fujimura Y, Ko S, Matsumoto M, Nakajima Y, Fukui H. Determination of ADAMTS13 and its clinical significance for ADAMTS13 supplementation therapy to improve the survival of patients with decompensated liver cirrhosis. Int J Hepatol. 2011;2011:759047.

    PubMed Central  PubMed  Google Scholar 

  136. White NJ, Pukrittayakamee S, Hien TT, Faiz MA, Mokuolu OA, Dondorp AM. Malaria. Lancet. 2014;383:723–35.

    PubMed  Google Scholar 

  137. Bridges DJ, Bunn J, van Mourik JA, Grau G, Preston RJ, Molyneux M, Combes V, O’Donnell JS, de Laat B, Craig A. Rapid activation of endothelial cells enables Plasmodium falciparum adhesion to platelet-decorated von Willebrand factor strings. Blood. 2010;115:1472–4.

    PubMed Central  CAS  PubMed  Google Scholar 

  138. Hollestelle MJ, Donkor C, Mantey EA, Chakravorty SJ, Craig A, Akoto AO, O’Donnell J, van Mourik JA, Bunn J. von Willebrand factor propeptide in malaria: evidence of acute endothelial cell activation. Br J Haematol. 2006;133:562–9.

    CAS  PubMed  Google Scholar 

  139. De Mast Q, Groot E, Lenting PJ, de Groot PG, McCall M, Sauerwein RW, Fijnheer R, van der Ven A. Thrombocytopenia and release of activated von Willebrand Factor during early Plasmodium falciparum malaria. J Infect Dis. 2007;196:622–8.

    PubMed  Google Scholar 

  140. Larkin D, de Laat B, Jenkins PV, Bunn J, Craig AG, Terraube V, Preston RJ, Donkor C, Grau GE, van Mourik JA, O’Donnell JS. Severe Plasmodium falciparum malaria is associated with circulating ultra-large von Willebrand multimers and ADAMTS13 inhibition. PLoS Pathog. 2009;5:e1000349.

    PubMed Central  PubMed  Google Scholar 

  141. Phiri HT, Bridges DJ, Glover SJ, van Mourik JA, de Laat B, M’baya B, Taylor TE, Seydel KB, Molyneux ME, Faragher EB, Craig AG, Bunn JE. Elevated plasma von Willebrand factor and propeptide levels in Malawian children with malaria. PLoS One. 2011;6:e25626.

    PubMed Central  CAS  PubMed  Google Scholar 

  142. Park GS, Ireland KF, Opoka RO, John CC. Evidence of endothelial activation in asymptomatic parasitemia and effect of blood group on levels of von Willebrand factor in malaria. J Pediatric Infect Dis Soc. 2012;1:16–25.

    PubMed Central  PubMed  Google Scholar 

  143. De Mast Q, Groot E, Asih PB, Syafruddin D, Oosting M, Sebastian S, Ferwerda B, Netea MG, de Groot PG, van der Ven AJ, Fijnheer R. ADAMTS13 deficiency with elevated levels of ultra-large and active von Willebrand factor in P. falciparum and P. vivax malaria. Am J Trop Med Hyg. 2009;80:492–8.

    PubMed  Google Scholar 

  144. Lowenberg EC, Charunwatthana P, Cohen S, van den Born BJ, Meijers JC, Yunus EB, Hassan MU, Hoque G, Maude RJ, Nuchsongsin F, Levi M, Dondorp AM. Severe malaria is associated with a deficiency of von Willebrand factor cleaving protease, ADAMTS13. Thromb Haemost. 2010;103:181–7.

    PubMed  Google Scholar 

  145. Kraisin S, Naka I, Patarapotikul J, Nantakomol D, Nuchnoi P, Hananantachai H, Tsuchiya N, Ohashi J. Association of ADAMTS13 polymorphism with cerebral malaria. Malar J. 2011;10:366.

    PubMed Central  CAS  PubMed  Google Scholar 

  146. Lattuada A, Rossi E, Calzarossa C, Candolfi R, Mannucci PM. Mild to moderate reduction of a von Willebrand factor cleaving protease (ADAMTS-13) in pregnant women with HELLP microangiopathic syndrome. Haematologica. 2003;88:1029–34.

    CAS  PubMed  Google Scholar 

  147. Hulstein JJ, van Runnard Heimel PJ, Franx A, Lenting PJ, Bruinse HW, Silence K, de Groot PG, Fijnheer R. Acute activation of the endothelium results in increased levels of active von Willebrand factor in hemolysis, elevated liver enzymes and low platelets (HELLP) syndrome. J Thromb Haemost. 2006;4:2569–75.

    CAS  PubMed  Google Scholar 

  148. Pourrat O, Coudroy R, Pierre F. ADAMTS13 deficiency in severe postpartum HELLP syndrome. Br J Haematol. 2013;163:409–10.

    CAS  PubMed  Google Scholar 

  149. Stepanian A, Cohen-Moatti M, Sanglier T, Legendre P, Ameziane N, Tsatsaris V, Mandelbrot L, de Prost D, Veyradier A. Von Willebrand factor and ADAMTS13: a candidate couple for preeclampsia pathophysiology. Arterioscler Thromb Vasc Biol. 2011;31:1703–9.

    CAS  PubMed  Google Scholar 

  150. Alpoim PN, Gomes KB, Godoi LC, Rios DR, Carvalho MG, Fernandes AP, Dusse LM. ADAMTS13, FVIII, von Willebrand factor, ABO blood group assessment in preeclampsia. Clin Chim Acta. 2011;412:2162–6.

    CAS  PubMed  Google Scholar 

  151. Hyun J, Kim HK, Kim JE, Lim MG, Jung JS, Park S, Cho HI. Correlation between plasma activity of ADAMTS-13 and coagulopathy, and prognosis in disseminated intravascular coagulation. Thromb Res. 2009;124:75–9.

    CAS  PubMed  Google Scholar 

  152. Austin SK, Starke RD, Lawrie AS, Cohen H, Machin SJ, Mackie IJ. The VWF/ADAMTS13 axis in the antiphospholipid syndrome: ADAMTS13 antibodies and ADAMTS13 dysfunction. Br J Haematol. 2008;141:536–44.

    CAS  PubMed  Google Scholar 

  153. van den Born BJ, van der Hoeven NV, Groot E, Lenting PJ, Meijers JC, Levi M, van Montfrans GA. Association between thrombotic microangiopathy and reduced ADAMTS13 activity in malignant hypertension. Hypertension. 2008;51:862–6.

    PubMed  Google Scholar 

  154. Morioka C, Uemura M, Matsuyama T, Matsumoto M, Kato S, Ishikawa M, Ishizashi H, Fujimoto M, Sawai M, Yoshida M, Mitoro A, Yamao J, Tsujimoto T, Yoshiji H, Urizono Y, Hata M, Nishino K, Okuchi K, Fujimura Y, Fukui H. Plasma ADAMTS13 activity parallels the APACHE II score, reflecting an early prognostic indicator for patients with severe acute pancreatitis. Scand J Gastroenterol. 2008;43:1387–96.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedrich Scheiflinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ferrari, S., Rottensteiner, H., Scheiflinger, F. (2015). Potential Clinical Use of Recombinant Human ADAMTS13. In: Rodgers, G. (eds) ADAMTS13. Springer, Cham. https://doi.org/10.1007/978-3-319-08717-7_9

Download citation

Publish with us

Policies and ethics