Skip to main content

Candidate Gene Approach in Miscanthus spp. for Biorefinery

  • Conference paper
  • First Online:
Book cover Molecular Breeding of Forage and Turf

Abstract

Cost-effective production of bioethanol and chemicals from lignocellulose, has attracted significant interest around the world. Rhizomatous and perennial warm-season C4 grasses such as Miscanthus spp. are potential dedicated feedstock crops, which are efficient at fixing CO2 in temperate regions and require less fertilizer for cultivation. Among Miscanthus spp., Miscanthus sinensis is the most broadly distributed in Asia. The degree of population differentiation using molecular markers, such as restriction site-associated DNA sequencing single nucleotide polymorphism (SNP) markers, Golden Gate SNPs and ten plastid microsatellite markers, has been evaluated for M. sinensis over its native range. Wide range of genetic variability in Asian Miscanthus germplasm resources was observed, and it would be valuable for the breeding programs. Targets for the improvement of grasses as feedstocks for bio-refineries are modifying biomass cell wall composition to reduce lignin concentrations to improve saccharification, regulation of flowering time for extending the vegetative phase to increase biomass potential and abiotic stresses such as cold tolerance. In this chapter, we outlined our recent research activities on molecular breeding such as candidate gene approach in Miscanthus spp.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adati S, Shiotani I (1962) The cytotaxonomy of the genus Miscanthus and its phylogenic status. Bull Fac Agric Mie Univ 25:1–14

    Google Scholar 

  • Anzoua KG, Suzuki K, Fujita S, Toma Y, Yamada T (2015) Evaluation of morphological traits, winter survival and biomass potential in wild Japanese Miscanthus sinensis Anderss. Populations in Northern Japan. Grassland Science, in press

    Google Scholar 

  • Boerjan W, de Andrade MG, Mazzafera P (2003) Lignin biosynthesis. Ann Rev Plant Biol 54:519–546

    Article  PubMed Central  PubMed  Google Scholar 

  • Chou CH (2009) Miscanthus plants used as an alternative biofuel material: the basic studies on ecology and molecular evolution. Renew Energy 34:1908–1912

    Article  CAS  Google Scholar 

  • Chou CH, Chiang YC, Chiang TY (2000) Genetic variability and phytogeography of Miscanthus sinensis var. condensatus, an apomictic grass, based on RAPD fingerprints. Can J Bot 78:1262–1268

    CAS  Google Scholar 

  • Clark LV, Brummer JE, Głowacka K, Hall M, Heo K, Long SP, Peng J, Yamada T, Yoo JH, Yu CY, Zhao H, Sacks EJ (2014) A footprint of past global climate change on the population genetic structure of Miscanthus sinensis. Ann Bot, 141:97–107

    Google Scholar 

  • Clifton-Brown JC, Lewandowski I (2002) Screening Miscanthus genotypes in field trials to optimise biomass yield and quality in Southern Germany. Eur J Agron 16:97–110

    Article  Google Scholar 

  • Clifton-Brown JC, Stampfl PF, Jones MB (2004) Miscanthus biomass production for energy in Europe and its potential contribution to decreasing fossil fuel carbon emission. Glob Change Biol 10:509–518

    Article  Google Scholar 

  • Clifton-Brown J, Chiang Y-C, Hodkinson TR (2008) Miscanthus: genetic resources and breeding potential to enhance bioenergy production. In: Vermerris W (ed) Genetic improvement of bioenergy crops. Springer, Berlin, pp 273–294

    Google Scholar 

  • Danalatos NG, Archontoulis SV, Mitsios I (2007) Potential growth and biomass productivity of Miscanthus × giganteus as affected by plant density and N-fertilization in central Greece. Biomass Bioenergy 31:145–152

    Article  Google Scholar 

  • Dwiyanti MS, Rudolph A, Swaminathan K, Nishiwaki A, Shimono Y, Kuwabara S, Matuura H, Nadir M, Moose S, Stewart JR, Yamada T (2013a) Genetic analysis of putative triploid Miscanthus hybrids and tetraploid M. sacchariflorus collected from sympatric populations of Kushima, Japan. BioEnergy Res 6:486–493

    Article  Google Scholar 

  • Dwiyanti MS, Stewart JR, Yamada T (2013b) Germplasm resources of Miscanthus and their application in breeding. In: Saha MC, Bhandari HS, Bouton JH (eds) Bioenergy Feedstocks: breeding and Genetics. Wiley-Blackwell, Ames pp 49–66

    Google Scholar 

  • Dwiyanti MS, Stewart JR, Yamada T (2014) Forages for feedstocks of biorefineries in temperate environments: review of lignin research in bioenergy crops and some insight into Miscanthus studies. Crop & Pasture Science, 65:1199–1206

    Google Scholar 

  • Greef JM, Deuter M (1993) Syntaxonomy of Miscanthus × giganteus Greef et Deu. Angew Bot 67:87–90

    Google Scholar 

  • Hisano H, Nandakumar R, Wang ZY (2009) Genetic modification of lignin biosynthesis for improved biofuel production. In Vitro Cell Dev Biol Plant 45:306–313.

    Article  CAS  Google Scholar 

  • Hodgson EM, Lister SJ, Bridgwater AV, Clifton-Brown J, Donnison IS (2010) Genotypic and environmentally derived variation in the cell wall composition of Miscanthus in relation to its use as a biomass feedstock. Biomass Bioenergy 34:652–660

    Article  CAS  Google Scholar 

  • Hodkinson TR, Chase MW, Lledó MD, Salamin N, Renvoize SA (2002) Phylogenetics of Miscanthus, Saccharum and related genera (Saccharinae, Andropogoneae, Poaceae) based on DNA sequences from ITS nuclear ribosomal DNA and plastid trnL intron and trnL-F intergenic spacers. J Plant Res 115:381–392

    Article  CAS  PubMed  Google Scholar 

  • Hwang OJ, Cho MA, Han YJ, Kim YM, Lim SH, Kim DS, Hwang I, Kim JI (2014) Agrobacterium—mediated genetic transformation of Miscanthus sinensis. Plant Cell Tiss Organ Cult 117:51–63

    Article  CAS  Google Scholar 

  • Iwata H, Kamijo T, Tsumura Y (2005) Genetic structure of Miscanthus sinensis ssp. condensatus (Poaceae) on Miyake Island: implications for revegetation of volcanically devastated sites. Ecol Res 20:233–238

    Article  Google Scholar 

  • Iwata H, Kamijo T, Tsumura Y (2006) Assessment of genetic diversity of native species in Izu Islands for a discriminate choice of source populations: implications for revegetation of volcanically devastated sites. Conserv Genet 7:399–413

    Article  Google Scholar 

  • Jakob K, Zhou F, Paterson AH (2009) Genetic improvement of C4 grasses as cellulosic biofuel feedstocks. In Vitro Cell Dev Biol Plant 45:291–305

    Article  CAS  Google Scholar 

  • Koo BH, Yoo SC, Park JW, Kwon CT, Lee BD, Gynheung A, Zhang Z, Li J, Li Z, Paek NC (2013) Natural variation in OsPRR37 regulates heading date and contributes to rice cultivation at a wide range of latitudes. Mol Plant 6:1877–1888

    Article  CAS  PubMed  Google Scholar 

  • Lafferty J, Lelley T (1994) Cytogenetic studies of different Miscanthus species with potential for agricultural use. Plant Breed 113:246–249

    Article  Google Scholar 

  • Lee Y (1964a) Taxonomic studies of the genus Miscanthus: relationships among the section, subsection, and species, part 1. J Jpn Bot 39:196–205

    Google Scholar 

  • Lee Y (1964b) Taxonomic studies on the genus Miscanthus: relationships among the section, subsection, and species, part 2: enumeration of species and varieties. J Jpn Bot 39:257–265

    Google Scholar 

  • Lewandowski I, Clifton-Brown JC, Scurlock JMO, Huisman W (2000) Miscanthus: European experience with a novel energy crop. Biomass Bioenergy 19:209–227

    Article  CAS  Google Scholar 

  • Li X, Weng J-K, Chapple C (2008) Improvement of biomass through lignin modification. Plant J 54:569–581

    Article  CAS  PubMed  Google Scholar 

  • Linde-Laursen I (1993) Cytogenetic analysis of Miscanthus “Giganteus”, an interspecific hybrid. Hereditas 119:297–300

    Article  Google Scholar 

  • Ma X-F, Jensen E, Alexandrov N, Troukhan M, Zhang L, Thomas-Jones S, Farrar K, Clifton-Brown J, Donnison I, Swaller T, Flavell R (2012) High resolution genetic mapping by genome sequencing reveals genome duplication and tetraploid genetic structure of the diploid Miscanthus sinensis. PLoS ONE 7:e33821

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Murphy RL, Klein RR, Morishige DT, Brady JA, Rooney WL, Miller FR, Dugas DV, Klein PE, Mullet JE (2011) Coincident light and clock regulation of pseudoresponse regulator protein 37 (PRR37) controls photoperiodic flowering in sorghum. Proc Natl Acad Sci USA 108:469–474

    Google Scholar 

  • Nishiwaki A, Mizuguti A, Kuwabara S, Toma Y, Ishigaki G, Miyashita T, Yamada T, Matuura H, Yamaguchi S, Rayburn AL, Akashi R, Stewart JR (2011) Discovery of natural Miscanthus (Poaceae) triploid plants in sympatric populations of Miscanthus sacchariflorus and Miscanthus sinensis in southern Japan. Amer J Bot 98:154–159

    Article  Google Scholar 

  • Numata M (1969) Progressive and retrogressive gradient of grassland vegetation measured by degree of succession—ecological judgment of grassland condition and trend IV. Plant Ecol 19:96–127

    Article  Google Scholar 

  • Qin Y, Kabir MA, Wang HW et al (2013) Assessment of genetic diversity and relationships based on RAPD and AFLP analyses in Miscanthus genera landraces. Can J Plant Sci 93:1–12

    Article  Google Scholar 

  • Sacks EJ, Juvik JA, Lin Q, Stewart JR, Yamada T (2013) The gene pool of Miscanthus species and its improvement. In: Paterson AH (ed) Genomics of the Saccharinae. Springer, New York, pp 73–101

    Chapter  Google Scholar 

  • Shimono Y, Kurokawa S, Nishida T, Ikeda H, Futagami N (2013) Phylogeography based on intraspecific sequence variation in chloroplast DNA of Miscanthus sinensis (Poaceae), a native pioneer grass in Japan. Botany 91:449–456

    Article  CAS  Google Scholar 

  • Slavov G, Robson P, Jensen E et al (2013) Contrasting geographic patterns of genetic variation for molecular markers vs. phenotypic traits in the energy grass Miscanthus sinensis. GCB Bioenergy 5:562–571

    Article  Google Scholar 

  • Stewart JR, Toma YO, Fernandez FG, Nishiwaki A, Yamada T, Bollero GN (2009) The ecology and agronomy of Miscanthus sinensis a species important to bioenergy crop development, in its native range in Japan: a review. GCB Bioenergy 1:126–153

    Google Scholar 

  • Sun Q, Lin Q, Yi Z-L, Yang Z-R, Zhou F-S (2010) A taxonomic revision of Miscanthus s.l (Poaceae) from China. Bot J Linnean Soc 164:178–220

    Article  Google Scholar 

  • Swaminathan K, Chae WB, Mitros T, Varala K, Xie L, Barling A, Glowackal K, Hall M, Jezowski S, Ming R, Matthew Hudson M, Juvik JA, Rokhsar DS, Moose SP (2012) A framework genetic map for Miscanthus sinensis from RNAseq-based markers shows recent tetraploidy. BMC Genom 13:142

    Article  CAS  Google Scholar 

  • Tuck G, Glendining MJ, Smith P, House JI, Wattenbach M (2006) The potential distribution of bioenergy crops in Europe under present and future climate. Biomass Bioenergy 30:183–197

    Article  Google Scholar 

  • Valverde F (2011) CONSTANS and the evolutionary origin of photoperiodic timing of flowering. J Exp Bot 62:2453–2463

    Article  CAS  PubMed  Google Scholar 

  • Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W (2010) Lignin biosynthesis and structure. Plant Physiol 153:895–905

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang X, Yamada T, Kong F-J, Abe Y, Hoshino Y, Sato H, Takamizo T, Kanazawa A, Yamada T (2011) Establishment of an efficient in vitro culture and particle bombardment-mediated transformation systems in Miscanthus sinensis Anderss., a potential bioenergy crop. GCB Bioenergy 3:322–332

    Article  CAS  Google Scholar 

  • Xu W-Z, Zhang X-Q, Huang L-K, Nie G, Wang J-P (2013) Higher genetic diversity and gene flow in wild populations of Miscanthus sinensis in southwest China. Biochem Syst Ecol 48:174–181

    Article  CAS  Google Scholar 

  • Yu CY, Kim HS, Rayburn AL, Widholm JM, Juvik JA (2009) Chromosome doubling of the bioenergy crop, Miscanthus × giganteus. GCB Bioenergy 1:404–412

    Article  Google Scholar 

  • Zhang QX, Shen YK, Shao RX et al (2013) Genetic diversity of natural Miscanthus sinensis populations in China revealed by ISSR markers. Biochem Syst Ecol 48:248–256

    Article  CAS  Google Scholar 

  • Zhao H, Wang B, He J, Yang J, Pan L, Sun D, Peng J (2013) Genetic diversity and population structure of Miscanthus sinensis germplasm in China. PLoS ONE 8:e75672

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zub HW, Brancourt-Hulmel M (2010) Agronomic and physiological performances of different species of Miscanthus, an important energy crop. A review. Agron Sustain Dev 30:201–214

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihiko Yamada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Yamada, T., Nagano, H., Dwiyanti, M., Clark, L., Sacks, E. (2015). Candidate Gene Approach in Miscanthus spp. for Biorefinery. In: Budak, H., Spangenberg, G. (eds) Molecular Breeding of Forage and Turf. Springer, Cham. https://doi.org/10.1007/978-3-319-08714-6_8

Download citation

Publish with us

Policies and ethics