Skip to main content

Modeling of Non-Linear Viscoelastic Behavior of Filled Rubbers

  • Chapter
  • First Online:
Non-Linear Viscoelasticity of Rubber Composites and Nanocomposites

Abstract

The nonlinear viscoelastic behavior of the composites of rubber filled with carbon black, silica, carbon nanotube (CNT), clay and surface-modified nanosilica were studied. The behavior of carbon black-filled rubber is thoroughly analyzed with the intention of developing a constitutive model able to reproduce both static and dynamic material responses. Several nonlinear viscoelastic models have been examined thoroughly and for each of them advantages and disadvantages are highlighted. A series of experiments concerning both static and dynamic tests were performed aimed at measuring all the relevant nonlinear effects. Temperature and strain rate dependencies were investigated and discussed. The standard methodology was applied to perform both tensile and compressive quasi-static tests. Some shortcomings of this procedure, resulting in a unreliable stress-strain constitutive curve around the undeformed configuration, were identified. This lead to the design a non-standard cylindrical specimen able to bear both tensile and compressive loading. Consequently, the influence of the shape factor was removed and the same boundary conditions, in tension and compression, were applied. This allowed the stiffness around the undeformed configuration to be evaluated in detail. The quasi-static experimental results also allowed the influence of the Mullins effect on the quasi-static response to be investigated: during the loading cycles, there is a significant reduction in the stress at a given level of strain, which is a consequence of the internal material rearrangement, i.e., the Mullins effect. This damage phenomenon is sometimes reported to induce transverse isotropy in the material, which is usually assumed to be isotropic. The Payne effect becomes more pronounced at higher silica loading. The filler characteristics such as particle size, specific surface area, and the surface structural features were found to be the key parameters influencing the Payne effect. A nonlinear decrease in storage modulus with increasing strain was observed for unfilled compounds also. The results reveal that the mechanism includes the breakdown of different networks namely the filler-filler network, the weak polymer-filler network, the chemical network, and the entanglement network. The model of variable network density proposed by Maier and Goritz has been applied to explain the nonlinear behavior. The model fits well with the experimental results. The interaction between epoxidized elastomeric matrix and silica as filler was extremely improved, even in the presence of very low content of epoxy groups into the polymer chain.

In memory to my parents Gordana Marković

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kraus G (1965) Reinforcement of elastomers. Wiley-Interscience, New York

    Google Scholar 

  2. Donnet J-B (1993) In some cases the reinforcement is supported by chemical bond of the polymer with the filler surface, by using coupling agent. In: Bansal RC, Wang MJ (eds) Carbon black science and technology. Marcel, New York

    Google Scholar 

  3. Görl U, Hunsche A, Müller A, Koban HG (1997) Rubber Chem Technol 70:608–623

    Google Scholar 

  4. Fröhlich J, Lugisland HD (2001) Rubber World 28:244–248

    Google Scholar 

  5. Payne AR (1962) The dynamic properties of carbon black loaded natural rubber vulcanizates. Part II. J Appl Polym Sci 6:368–372

    CAS  Google Scholar 

  6. Medalia AI (1986) Rubber Chem Technol 59:432–454

    CAS  Google Scholar 

  7. Wang MJ (1999) The role of filler networking in dynamic properties of filled rubber. Rubber Chem Technol 72:430–448

    CAS  Google Scholar 

  8. Payne AR (1962) The dynamic properties of carbon black-loaded natural rubber vulcanizates. Part I. J Appl Polym Sci VI:57–63

    Google Scholar 

  9. Payne AR (1965) Reinforcement of elastomers. Interscience: New York, p 69 (Chap. 3)

    Google Scholar 

  10. Payne AR, Whitaker RE (1971) Rubber Chem Technol 44:440–478

    CAS  Google Scholar 

  11. Robertson CG, Lin CJ, Rackaitis M, Roland CM (2008) Macromolecules 41:2727–2731

    CAS  Google Scholar 

  12. Kraus G (1984) J Appl Polym Sci 39:75–92

    CAS  Google Scholar 

  13. Medalia AI (1973) Rubber World 168:49

    CAS  Google Scholar 

  14. Wang M (1998) Rubber Chem Technol 71:520–589

    CAS  Google Scholar 

  15. Kraus G (1984) Mechanical losses in carbon-black-filled rubbers. In: Applied polymer symposia, 75–92, Phillips Petroleum Co, Bartlesville, OK, USA, Phillips Petroleum Co, Bartlesville, OK, USA

    Google Scholar 

  16. Huber G, Vilgis TA (2002) On the mechanism of hydrodynamic reinforcement in elastic composites. Macromolecules 35:9204–9210

    CAS  Google Scholar 

  17. Witten TA, Rubinstein M, Colby RH (1993) Reinforcement of rubber by fractal aggregates. J Phys II 3:367–383

    CAS  Google Scholar 

  18. Heinrich G, Klüppel M, Vilgis TA (2002) Reinforcement of elastomers. Curr Opin Sol Stat Mater Sci 6:195–203

    CAS  Google Scholar 

  19. Kluppel M, Schuster R, Heinrich G (1997) Rubber Chem Technol 70:243–255

    CAS  Google Scholar 

  20. Funt JM (1999) Rubber Chem Technol 4:657–675

    Google Scholar 

  21. Maier PG, Goritz D (1996) Kautsch. Gummi Kunstst 49, Jahrgang.Nr. 1/96

    Google Scholar 

  22. Zhu AJ, Sternstein SS (2003) Nonlinear viscoelasticity of nanofilled polymers: interfaces, chain statistics and properties recovery kinetics. Compos Sci Technol 63:1113–1126

    CAS  Google Scholar 

  23. Sternstein SS, Zhu AJ (2002) Reinforcement mechanism of nanofilled polymer melts as elucidated by nonlinear viscoelastic behavior. Macromolecules 35:7262–7273

    CAS  Google Scholar 

  24. Marrone M, Montanari T, Busca G, Conzatti L, Costa G, Castellano M, Turturro A (2004) J Phys Chem B 108:3563–3572

    CAS  Google Scholar 

  25. Bokobza L (2004) The reinforcement of elastomeric networks by fillers. Macromol Mater Eng 289:607–621

    CAS  Google Scholar 

  26. Castellano M, Conzatti L, Turturro A, Costa G, Busca G (2007) J Phys Chem B 111:4495–502

    CAS  Google Scholar 

  27. Clement F, Bokobza L, Monnerie L (2005) Investigation of the Payne effect and its temperature dependence on silica-filled polydimethylsiloxane networks. Part I: Experimental results. Rubber Chem Technol 78:211

    CAS  Google Scholar 

  28. Paquien JN, Galy J, Gerard JF, Pouchelon A (2005) Rheological studies of fumed silica–polydimethylsiloxane suspensions. Colloids Surf A 260:165–172

    CAS  Google Scholar 

  29. Ramier J, Gauthier C, Chazeau L, Stelandre L, Guy L (2007) J Polym Sci B Polym Phys 45:286–298

    CAS  Google Scholar 

  30. Maier PG, Goritz D (1993) Kautsch Gummi Kunstst 46, Jahrgang. Nr. 11/93

    Google Scholar 

  31. Maier PG, Goritz D (2000) Kautsch Gummi Kunstst 53, Jahrgang. Nr. 12/2000

    Google Scholar 

  32. Cassagnau P (2003) Payne effect and shear elasticity of silica-filled polymers in concentrated solutions and in molten state. Polymer 44:2455–2462

    CAS  Google Scholar 

  33. Cassagnau P (2008) Melt rheology of organoclay and fumed silica nanocomposites. Polymer 49:2183–2196

    CAS  Google Scholar 

  34. Sun J, Song Y, Zheng Q, Tan H, Yu J, Li H (2007) J Polym Sci B Polym Phys 45:2594–2602

    CAS  Google Scholar 

  35. Yatsuyanagi F, Kaidou H, Ito M (1999) Rubber Chem Technol 4:657–672

    Google Scholar 

  36. Berriot J, Montes H, Lequeux F, Long D, Sotta P (2003) Europhys Lett 64:50–56

    CAS  Google Scholar 

  37. Berriot J, Lequeux F, Montes H, Monnerie L, Long D, Sotta PJ (2002) Non-Cryst Solids 719:307–310

    Google Scholar 

  38. Montes H, Lequeux F, Berriot J (2003) Influence of the glass transition temperature gradient on the nonlinear viscoelastic behavior in reinforced elastomers. Macromolecules 36:8107–8118

    CAS  Google Scholar 

  39. Merabia S, Sotta P, Long DR (2008) A microscopic model for the reinforcement and the nonlinear behavior of filled elastomers and thermoplastic elastomers (Payne and Mullins Effects). Macromolecules 41:8252–8266

    CAS  Google Scholar 

  40. Ferry JD (1980) Viscoelasticity properties of polymer, 3rd edn. Wiley, New York

    Google Scholar 

  41. Callister W (2007) Materials science and engineering. Wiley, City

    Google Scholar 

  42. Goldberg A, Lesuer DR, Patt J (1989) Fracture morphologies of carbon-blackloaded SBR subjected to low-cycle, high-stress fatigue. Rubber Chem Technol 62:272–287

    CAS  Google Scholar 

  43. Chazeau L, Brown JD, Yanyo LC, Sternstein SS (2000) Modulus recovery kinetics and other insights into the Payne effect for filled elastomers. Polym Compos 21:202–222

    CAS  Google Scholar 

  44. Wolff S, Donnet J-B (1990) Rubber Chem Technol 63:32–61

    CAS  Google Scholar 

  45. Brennan JJ, Jermyn TE, Bonnstra BB (1964) J Appl Polym Sci 8:2687–2706

    CAS  Google Scholar 

  46. Fletcher WP, Gent AN (1953) Trans IRI 29:266–80

    Google Scholar 

  47. Payne AR (1964) J Appl Polym Sci 8:1661–1667

    Google Scholar 

  48. Medalia AI (1978) Rubber Chem Technol 51:437–523

    CAS  Google Scholar 

  49. Schapery R (1997) Nonlinear viscoelastic and viscoplastic constitutive equations based on thermodynamics. Mech Time-Depend Mater 1:209–240

    Google Scholar 

  50. Ogden RW (1997) Non-linear elastic deformations. Dover Publications, New York

    Google Scholar 

  51. Simo JC (1987) On a fully three-dimensional finite-strain viscoelastic damage model: Formulation and computational aspects. Comput Meth Appl Mech Eng 60:153–173

    Google Scholar 

  52. Govindjee S, Simo JC (1992) Mullins effect and the strain amplitude dependence of the storage modulus. Int J Solids Struct 29:1737–1751

    Google Scholar 

  53. Drozdov AD, Dorfmann A (2003) Finite viscoelasticity of filled rubber: experiments and numerical simulation. Arch Appl Mech 72:651–672

    Google Scholar 

  54. Laraba-Abbes F, Ienny P, Piques R (2003) A new ’Tailor-made’ methodology for the mechanical behaviour analysis of rubber-like materials: II. Application to the hyperelastic behaviour characterization of a carbon-black filled natural rubber vulcanizate. Polymer 44:821–840

    CAS  Google Scholar 

  55. Przybylo P, Arruda E (1998) Experimental investigations and numerical modeling of incompressible elastomers during non-homogeneous deformations. Rubber Chem Technol 71:730–749

    CAS  Google Scholar 

  56. Treloar L (2005) The physics of rubber elasticity. Clarendon Press, Oxford

    Google Scholar 

  57. Drozdov AD (2007) Constitutive equations in finite elasticity of rubbers. Int J Solids Struct 44:272–297

    CAS  Google Scholar 

  58. Bischoff J, Arruda E, Grosh K (2001) A new constitutive model for the compressibility of elastomers at finite deformations. Rubber Chem Technol 74:541–559

    CAS  Google Scholar 

  59. MacKnight W (1966) Volume changes accompanying the extension of rubber-like materials. J Appl Phys 37:4587

    CAS  Google Scholar 

  60. Ogden RW (1976) Volume changes associated with the deformation of rubber-like solids. J Mech Phys Solids 24:323–338

    Google Scholar 

  61. Penn RW (1970) Volume changes accompanying the extension of rubber. J Rheol 14:509–517

    CAS  Google Scholar 

  62. Reichert WF, Hopfenmueller MK, Goritz D (1987) Volume change and gas transport at uniaxial deformation of filled natural rubber. J Mater Sci 22:3470–3476

    CAS  Google Scholar 

  63. Mott P, Roland C (2010) Response to “Comment on paper ” The bulk modulus and Poisson’s ratio of “incompressible" materials”. J Sound Vib 329:368–369

    Google Scholar 

  64. Mott P, Dorgan J, Roland C (2008) The bulk modulus and Poisson’s ratio of “incompressible” materials. J Sound Vib 312:572–575

    Google Scholar 

  65. Voinovich P (2010) Comment on paper “the bulk modulus and Poisson’s ratio of “incompressible” materials” by P.H. Mott, J.R. Dorgan, C.M. Roland. J Sound Vib 329:366–367

    Google Scholar 

  66. Yeoh O, Fleming P (1997) A new attempt to reconcile the statistical and phenomenological theories of rubber elasticity. J Polym Sci Pt B Polym Phys 35:1919–1931

    CAS  Google Scholar 

  67. Shan GF, Yang W, Yang M, Xie B, Feng J, Fu Q (2007) Effect of temperature and strain rate on the tensile deformation of polyamide 6. Polymer 48:2958–2968

    CAS  Google Scholar 

  68. Chanliau-Blanot MT, Nardiim M, Donnet JB, Papirer E, Roche G, Lau-renson P, Rossignol G (1989) Temperature dependence of the mechanical properties of EPDM rubber-polyethylene blends filled with aluminium hydrate particles. J Mater Sci 24:641–648

    CAS  Google Scholar 

  69. Khan AS, Lopez-Pamies O, Kazmi R (2006) Thermo-mechanical large deformation response and constitutive modeling of viscoelastic polymers over a wide range of strain rates and temperatures. Int J Plast 22:581–601

    CAS  Google Scholar 

  70. Boiko AV, Kulik VM, Seoudi BM, Chun H, Lee I (2010) Measurement method of complex viscoelastic material properties. Int J Solids Struct 47:374–382

    Google Scholar 

  71. Lee JH, Kim KJ (2001) Characterization of complex modulus of viscoelastic materials subject to static compression. Mech Time-Depend Mater 5:255–271

    Google Scholar 

  72. Gottenberg W, Christensen R (1972) Prediction of the transient response of a linear viscoelastic solid. J Appl Mech 6:448–450

    Google Scholar 

  73. Osanaiye GJ (1996) Effects of temperature and strain amplitude on dynamic mechanical properties of EPDM gum and its carbon black compounds. J Appl Polym Sci 59:567–575

    CAS  Google Scholar 

  74. Luo W, Hu X, Wang C, Li Q (2010) Frequency- and strain-amplitude-dependent dynamical mechanical properties and hysteresis loss of CB-filled vulcanized natural rubber. Int J Mech Sci 52:168–174

    Google Scholar 

  75. Pipkin A (1986) Lectures on viscoelasticity theory. Springer, Berlin

    Google Scholar 

  76. Williams M, Landel R, Ferry J (1955) The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J Am Chem Soc 77:3701–3707

    CAS  Google Scholar 

  77. Christensen R (2003) Theory of viscoelasticity, 2nd edn. Dover Publications, New York

    Google Scholar 

  78. Singh A, Lakes R, Gunasekaran S (2006) Viscoelastic characterization of selected foods over an extended frequency range. Rheol Acta 46:131–142

    Google Scholar 

  79. Mullins L (1947) Effect of stretching on the properties of rubber. J Rubber Res 16:275–289

    CAS  Google Scholar 

  80. Dorfmann A, Ogden RW (2003) A pseudo-elastic model for loading, partial unloading and reloading of particle-reinforced rubber. Int J Solids Struct 40:2699–2714

    Google Scholar 

  81. Dorfmann A, Ogden RW (2004) A constitutive model for the Mullins effect with permanent set in particle-reinforced rubber. Int J Solids Struct 41:1855–78

    Google Scholar 

  82. Harwood JAC, Mullins L, Payne AR (1966) Stress softening in natural rubber vulcanizates. Part II. Stress softening effects in pure gum and filler loaded rubbers. Rubber Chem Technol 39:814–22

    Google Scholar 

  83. Harwood JAC, Payne AR (1966) Stress softening in natural rubber vulcanizates III. Carbon black filled vulcanizates. J Appl Polym Sci 10:315–23

    CAS  Google Scholar 

  84. Mullins L, Tobin NR (1957) Theoretical model for the elastic behavior of filler reinforced vulcanized rubbers. Rubber Chem Technol 30:555–71

    Google Scholar 

  85. Klüppel M, Schramm M (2000) A generalized tube model of rubber elasticity and stress softening of filler reinforced elastomer systems. Macromol Theory Simul 9:742–54

    Google Scholar 

  86. Diani J, Brieu M, Vacherand JM (2006) A damage directional constitutive model for Mullins effect with permanent set and induced anisotropy. Eur J Mech Solids/A 25:483–96

    Google Scholar 

  87. Kakavas PA (1996) Mechanical properties of bonded elastomer discs subjected to triaxial stress. J Appl Polym Sci 59:251–61

    CAS  Google Scholar 

  88. Flamm M, Steinweger T, Spreckels J, Brüger T (2008) In mechanical properties of EPDM. In: Boukamel A, Laiarinandrasana L, Méo S, Verron E (eds) In constitutive models for rubber. V. Balkema, Netherlands, pp 233–242

    Google Scholar 

  89. Clément F, Bokobza L, Monnerie L (2001) On the Mullins effect in silica filled polydimethylsiloxane networks. Rubber Chem Technol 74:846–70

    Google Scholar 

  90. Mullins L (1948) Effect of stretching on the properties of rubber. J Rubber Res 16:275–82

    Google Scholar 

  91. Stevenson I, David L, Gauthier C, Arambourg L, Davenas J, Vigier G (2001) Influence of SiO2 fillers on the radiation ageing of silicone rubbers. Polymer 42:9287–92

    CAS  Google Scholar 

  92. Hanson DE, Hawley M, Houlton R, Chitanvis K, Rae P, Orler EB et al (2005) Stress softening experiments in silica-filled polydimethylsiloxane provide insight into a mechanism for the Mullins effect. Polymer 46:10989–95

    CAS  Google Scholar 

  93. Blanchard AF, Parkinson D (1952) Breakage of carbon-rubber networks by applied stress. J Ind Eng Chem 44:799–812

    CAS  Google Scholar 

  94. Mullins L, Tobin N (1957) Theoretical model for the elastic behavior of fillerreinforced vulcanized rubbers. Rubber Chem Technol 30:551–571

    Google Scholar 

  95. Qi HJ, Boyce MC (2004) Constitutive model for stretch-induced softening of the stress-stretch behavior of elastomeric materials. J Mech Phys Solids 52:2187–2205

    CAS  Google Scholar 

  96. Horgan CO, Ogden RW, Saccomandi G (2004) A theory of stress softening of elastomers based on finite chain extensibility. Proc R Soc A 460:1737–1754

    CAS  Google Scholar 

  97. Ogden RW, Roxburgh DG (1999) A pseudo-elastic model for the Mullins effect in filled rubber. Proc R Soc A 455:2861–2877

    Google Scholar 

  98. Gent A (1996) A new constitutive relation for rubber. Rubber Chem Technol 69:59–61

    CAS  Google Scholar 

  99. Kachanov LM (1958) Time of the rupture process under creep conditions. Izvestiya Akad Nauk SSR Otd Tekh Nauk 58:26–31

    Google Scholar 

  100. Ziegler J, Schuster RH (2003) Kautsch Gummi Kunstst 56(4):159–163

    CAS  Google Scholar 

  101. Lion A, Kardelky C (2004) The Payne effect in finite viscoelasticity: constitutive modelling based on fractional derivatives and intrinsic time scales. Int J Plast 20:1313–1345

    CAS  Google Scholar 

  102. Beatty M (1996) Nonlinear effects in fluids and solids, chap. 2, Introduction to Nonlinear Elasticity, 13–112. Plenum Press, New York

    Google Scholar 

  103. Holzapfel G (2000) Nonlinear solid mechanics: a continuum approach for engineering. Wiley, New York

    Google Scholar 

  104. Liu IS (2004) On Euclidean objectivity and the principle of material frame-indifference. Continuum Mech Thermodyn 16:177–183

    CAS  Google Scholar 

  105. Murdoch AI (2005) On criticism of the nature of objectivity in classical continuum physics. Continuum Mech Thermodyn 17:135–148

    Google Scholar 

  106. Rivlin R (2002) Frame indifference and relative frame indifference. Math Mech Solids 10:145–154

    Google Scholar 

  107. Rivlin RS (2005) Some thoughts on frame indifference. Math Mech Solids 11:113–122

    Google Scholar 

  108. Truesdell CA, Noll W (1965) The non-linear field theories of mechanics, 3rd edn. Springer, New York

    Google Scholar 

  109. Rivlin R, Ericksen J (1955) Stress-deformation relations for isotropic materials. J Rat Mech Anal 4:323–425

    Google Scholar 

  110. Flory P (1961) Thermodynamic relations for high elastic materials. Trans Faraday Soc 57:829–838

    CAS  Google Scholar 

  111. Sansour C (2008) On the physical assumptions underlying the volumetric-isochoric split and the case of anisotropy. Eur J Mech A Solids 27:28–39

    Google Scholar 

  112. Simo J, Taylor R, Pister K (1985) Variational and projection methods for the volume constraint in finite deformation elasto-plasticity. Comput Meth Appl Mech Eng 51:177–208

    Google Scholar 

  113. Eihlers W, Eppers G (1998) The simple tension problem at large volumetric strains computed from finite hyperelastic material laws. Acta Mech 137:12–27

    Google Scholar 

  114. Rivlin R, Saunders D (1952) The free energy of deformation for vulcanized rubber. Trans Faraday Soc 48:200–206

    CAS  Google Scholar 

  115. Hartmann S (2001) Numerical studies on the identification of the material parameters of Rivlin’s hyperelasticity using tension-torsion tests. Acta Mech 148:129–155

    Google Scholar 

  116. Pucci E, Saccomandi G (1997) On universal relations in continuum mechanics. Continuum Mech Thermodyn 9:61–72

    Google Scholar 

  117. Johnson AR, Quigley CJ, Freese CE (1995) A viscohyperelastic finite-element model for rubber. Comput Meth Appl Mech Eng 127:163–180

    Google Scholar 

  118. Noll W (1958) A mathematical theory of the mechanical behavior of continuous media. Arch Rational Mech Anal 2:197–226

    Google Scholar 

  119. Wineman A (2009) Nonlinear viscoelastic solids–a review. Math Mech Solids 14:300–366

    Google Scholar 

  120. Quintanilla R, Saccomandi G (2007) The importance of the compatibility of nonlinear constitutive theories with their linear counterparts. J Appl Mech 74:455–460

    Google Scholar 

  121. Malkin A (1995) Rheology fundamentals. ChemTec Publishing, Toronto-Scarborough

    Google Scholar 

  122. Boltzmann L (1874). Zur Theorie der elastischen Nachwirkung. Sitzungsber Math Naturwiss Kl Kaiserl Akad Wiss 70:275–306

    Google Scholar 

  123. Volterra V (1912) Sur les equations integro-differentielles et leurs applications. Acta Math 35:295–356

    Google Scholar 

  124. Coleman BD, Noll W (1961) Foundations of linear viscoelasticity. Rev Mod Phys 33:239–249

    Google Scholar 

  125. Coleman BD (1964) Thermodynamics of materials with memory. Arch Rational Mech Anal 17:1–46

    Google Scholar 

  126. Coleman BD, Gurtin ME (1967) Thermodynamics with Internal State Variables. J Chem Phys 47:597–613

    CAS  Google Scholar 

  127. Coleman BD, Noll W (1963) The thermodynamics of elastic materials with heat conduction and viscosity. Arch Rational Mech Anal 13:167–178

    Google Scholar 

  128. Holzapfel GA (1996) On large strain viscoelasticity: Continuum formulation and finite element applications to elastomeric structures. Int J Num Methods Eng 39:3903–3926

    Google Scholar 

  129. Holzapfel GA, Gasser TC (2001) A viscoelastic model for fiber-reinforced composites at finite strains: continuum basis, computational aspects and applications. Comput Meth Appl Mech Eng 190:4379–4403

    Google Scholar 

  130. Yoshida J, Abe M, Fujino Y (2004) Constitutive model of high-damping rubber materials. J Eng Mech 130:129–141

    Google Scholar 

  131. Meggyes A (2001) Multiple decomposition in finite deformation theory. Acta Mech 146:169–182

    Google Scholar 

  132. Sidoroff F (1974) Nonlinear viscoelastic model with an intermediate configuration. J Mécaniques 13:679–713

    Google Scholar 

  133. Lubliner J (1985) A model of rubber viscoelasticity. Mech Res Commun 12:93–99

    Google Scholar 

  134. Green M, Tobolsky A (1946) A new approach to the theory of relaxing polymeric media. J Chem Phys 14:80–92

    CAS  Google Scholar 

  135. Bonet J (2001) Large strain viscoelastic constitutive models. Int J Solids Struct 38:2953–2968

    Google Scholar 

  136. Hasanpour K, Ziaei-Rad S, Mahzoon M (2009) A large deformation framework for compressible viscoelastic materials: constitutive equations and finite element implementation. Int J Plast 25:1154–1176

    CAS  Google Scholar 

  137. Haupt P, Sedlan K (2001) Viscoplasticity of elastomeric materials: experimental facts and constitutive modelling. Arch Appl Mech 71:89–109

    Google Scholar 

  138. Hoo Fatt M, Al-Quraishi A (2008) High strain rate constitutive modeling for natural rubber. In: Proceedings of the 5th European Conference on Constitutive Models for Rubber, ECCMR 2007. University of Akron, Akron, OH, United States, pp 53–60

    Google Scholar 

  139. Huber N, Tsakmakis C (2000) Finite deformation viscoelasticity laws. Mech Mater 32:1–18

    Google Scholar 

  140. Lion A (1997) A physically based method to represent the thermo-mechanical behaviour of elastomers. Acta Mech 123:1–25

    Google Scholar 

  141. Vidoli S, Sciarra G (2002) A model for crystal plasticity based on micro-slip descriptors. Continuum Mech Thermodyn 14:425–435

    Google Scholar 

  142. Haupt P, Lion A, Backhaus E (2000) On the dynamic behaviour of polymers under finite strains: constitutive modelling and identification of parameters. Int J Solids Struct 37:3633–3646

    Google Scholar 

  143. Haupt P (1985) On the concept of an intermediate configuration and its application to a representation of viscoelastic-plastic material behavior. Int J Plast 1:303–316

    Google Scholar 

  144. Haupt P, Lion A (2002) On finite linear viscoelasticity of incompressible isotropic materials. Acta Mech 159:87–124

    Google Scholar 

  145. Hoo Fatt MS, Ouyang X (2007) Integral-based constitutive equation for rubber at high strain rates. Int J Solids Struct 44:6491–6506

    Google Scholar 

  146. Huber G, Vilgis TA, Heinrich G (1996) Universal properties in the dynamical deformation of filled rubbers. J Phys Cond Matter 8:L409–L412

    CAS  Google Scholar 

  147. Fancello E, Ponthot J, Stainier L (2008) A variational framework for nonlinear viscoelastic models in finite deformation regime. J Comput Appl Math 215:400–408

    Google Scholar 

  148. Green AE, Rivlin RS (1957) The mechanics of non-linear materials with memory. Arch Rational Mech Anal 1:1–21

    Google Scholar 

  149. Fichera G (1979) Avere una memoria tenace crea gravi problemi. Arch Rational Mech Anal 70:101–112

    Google Scholar 

  150. Drapaca CS, Sivaloganathan S, Tenti G (2007) Nonlinear constitutive laws in viscoelasticity. Math Mech Solids 12:475–501

    Google Scholar 

  151. Fabrizio M, Giorgi C, Morro A (1995) Internal dissipation, relaxation property and free-energy in materials with fading memory. J Elast 40:107–122

    Google Scholar 

  152. Del Piero G, Deseri L (1997) On the concepts of state and free energy in linear viscoelasticity. Arch Rational Mech Anal 138:1–35

    Google Scholar 

  153. Fabrizio M, Morro A (1992) Mathematical problems in linear viscoelasticity. Society for Industrial and Applied Mathematics, Philadelphia

    Google Scholar 

  154. Golden JM (2005) A proposal concerning the physical rate of dissipation in materials with memory. Q Appl Math 63:117–155

    Google Scholar 

  155. Golden JM (2001) Consequences of non-uniqueness in the free energy of materials with memory. Int J Eng Sci 39:53–70

    Google Scholar 

  156. Gurtin ME, Hrusa WJ (1988) On energies for nonlinear viscoelastic materials of single-integral type. Q Appl Math 46:381–392

    Google Scholar 

  157. Höfer P, Lion A (2009) Modelling of frequency- and amplitude-dependent material properties of filler-reinforced rubber. J Mech Phys Solids 57:500–520

    Google Scholar 

  158. Adolfsson K, Enelund M, Olsson P (2005) On the fractional order model of viscoelasticity. Mech Time-Depend Mater 9:15–34

    CAS  Google Scholar 

  159. Hanyga A (2007) Fractional-order relaxation laws in non-linear viscoelasticity. Continuum Mech Thermodyn 19:25–36

    Google Scholar 

  160. Hanyga A, Seredynska M (2007) Multiple-integral viscoelastic constitutive equations. Int J Non Linear Mech 42:722–732

    Google Scholar 

  161. Pipkin AC, Rogers TG (1968) A non-linear integral representation for viscoelastic behaviour. J Mech Phys Solids 16:59–72

    Google Scholar 

  162. Hassani S, Alaoui Soulimani A, Ehrlacher A (1998) A nonlinear viscoelastic model: the pseudo-linear model. Eur J Mech A Solids 17:567–598

    Google Scholar 

  163. Lockett F (1972) Nonlinear viscoelastic solids. Academic, Boston

    Google Scholar 

  164. Fung YC (1972) Stress-strain-history relations of soft tissues in simple elongation. In: Fung NPYC, Anliker M (eds) Biomechanics: its foundations and objectives. Prentice Hall, Englewood Cliffs, pp 181–208

    Google Scholar 

  165. Fosdick RL, Yu JH (1998) Thermodynamics, stability and non-linear oscillations of viscoelastic solids. 2. History type solids. Int J Non-Linear Mech 33:165–188

    Google Scholar 

  166. Bernstein B, Kearsley EA, Zapas LJ (1963) A study of stress relaxation with finite strain. J Rheol 7:391–410

    Google Scholar 

  167. Hanyga A (2005) Viscous dissipation and completely monotonic relaxation moduli. Rheol Acta 44:614–621

    CAS  Google Scholar 

  168. Adolfsson K, Enelund M (2003) Fractional derivative viscoelasticity at large deformations. Nonlinear Dyn 33:301–321

    Google Scholar 

  169. Gil-Negrete N, Vinolas J, Kari L (2009) A nonlinear rubber material model combining fractional order viscoelasticity and amplitude dependent effects. J Appl Mech 76:011009

    Google Scholar 

  170. Rogers L (1983) Operators and fractional derivatives for viscoelastic constitutive equations. J Rheol 27:351–372

    Google Scholar 

  171. Metzler R, Nonnenmacher T (2003) Fractional relaxation processes and fractional rheological models for the description of a class of viscoelastic materials. Int J Plast 19:941–959

    CAS  Google Scholar 

  172. Fosdick RL, Yu JH (1996) Thermodynamics, stability and non-linear oscillations of viscoelastic solids.1. Differential type solids of second grade. Int J Non-Linear Mech 31:495–516

    Google Scholar 

  173. Hibbit D, Karlsson B, Sorensen P (2007) ABAQUS/theory manual, 6th edn. Hibbitt, Karlsson & Sorensen, Inc., Rhode Island

    Google Scholar 

  174. Shim VPW, Yang LM, Lim CT, Law PH (2004) A visco-hyperelastic constitutive model to characterize both tensile and compressive behavior of rubber. J Appl Polym Sci 92:523–531

    CAS  Google Scholar 

  175. Hallquist J (1998) LS-DYNA theoretical manual. Livermore Software Technology Corporation

    Google Scholar 

  176. Yang LM, Shim VPW, Lim CT (2000) A visco-hyperelastic approach to modelling the constitutive behaviour of rubber. Int J Impact Eng 24:545–560

    Google Scholar 

  177. Ciambella J, Destrade M, Ogden RW (2009) On the ABAQUS FEA model of finite viscoelasticity. Rubber Chem Technol 82:184–193

    CAS  Google Scholar 

  178. Biot MA (1954) Theory of Stress-Strain Relations in Anisotropic Viscoelasticity and Relaxation Phenomena. J Appl Phys 25:1385–1391

    Google Scholar 

  179. Tvedt B (2008) Quasilinear equations for viscoelasticity of strain-rate type. Arch Rational Mech Anal 189:237–281

    Google Scholar 

  180. Destrade M, Saccomandi G (2004) Finite-amplitude inhomogeneous waves in Mooney-Rivlin viscoelastic solids. Wave Motion 40:251–262

    Google Scholar 

  181. Destrade M, Ogden R, Saccomandi G (2009) Small amplitude waves and stability for a pre-stressed viscoelastic solid. Z Angew Math Phys 60:511–528

    Google Scholar 

  182. Hayes MA, Saccomandi G (2000) Finite amplitude transverse waves in special incompressible viscoelastic solids. J Elast 59:213–225

    Google Scholar 

  183. Beatty MF, Zhou Z (1991) Universal motions for a class of viscoelastic materials of differential type. Continuum Mech Thermodyn 3:169–191

    Google Scholar 

  184. Landau L, Lifshitz E (1986) Theory of elasticity: volume 7. Butterworth-Heinemann, Oxford

    Google Scholar 

  185. Dai F, Rajagopal K, Wineman A (1992) Non-uniform extension of a non-linear viscoelastic slab. Int J Solids Struct 29:911–930

    Google Scholar 

  186. Johnson G, Livesay G, Woo SY, Rajagopal K (1996) A single integral finite strain viscoelastic model of ligaments and tendons. J Biomech Eng 118:221–226

    CAS  Google Scholar 

  187. Rajagopal K, Wineman A (2008) A quasi-correspondence principle for Quasi-Linear viscoelastic solids. Mech Time-Depend Mater 12:1–14

    Google Scholar 

  188. Destrade M, Saccomandi G (2006) Solitary and compactlike shear waves in the bulk of solids. Phys Rev E 73:065604

    Google Scholar 

  189. Salvatori MC, Sanchini G (2005) Finite amplitude transverse waves in materials with memory. Int J Eng Sci 43:290–303

    Google Scholar 

  190. Rudin W (1976) Principles of mathematical analysis. McGraw-Hill, New York

    Google Scholar 

  191. Meera AP, Said S, Grohens Y, Thomas S (2009) Nonlinear viscoelastic behavior of silica-filled natural rubber nanocomposites. J Phys Chem C 113(42):17997–18002

    CAS  Google Scholar 

  192. Wu JD, Liechti KM (2000) Multiaxial and time dependent behavior of a filled rubber. Mech Time-Depend Mater 4:293–331

    Google Scholar 

Download references

Acknowledgment

The financial support for this study was granted by the Ministry of Science and Technological Development of the Republic of Serbia (Projects nos. 45022 and 45020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordana Marković .

Editor information

Editors and Affiliations

Dynamic Moduli of Nonlinear Viscoelastic Models

Dynamic Moduli of Nonlinear Viscoelastic Models

In Eq. (161) f, l and h are nonlinear functions of the strain and the strain rate. Under weak

$$ f(t)=f\left[{E}_0+{E}_1 \sin \left(\omega t\right),{E}_1\omega \cos \left(\omega t\right)\right]=\frac{f_0}{2}+{\displaystyle \sum_{i=1}^{\infty}\left[{f}_i^S \sin \left(i\omega t\right)+{f}_i^C \cos \left(i\omega t\right)\right]} $$
(162)

Where

$$ {f}_0={f}_0\left({E}_0,{E}_1\right),\kern1em {f}_i^S={f}_i^S\left({E}_0,{E}_1,\omega \right),\kern1em {f}_i^C={f}_i^C\left({E}_0,{E}_1,\omega \right) $$

regularity assumption, their Fourier series are uniformly convergent, e.g.,

The Fourier coefficients of l and h will be denoted as l S i , l C i and h S i , h C i , respectively.If the series (162) are also absolutely convergent, by means of the Cauchy formula, the following expression of the stationary stress is recovered

$$ {\sigma}_s(t)=\frac{f_0}{2}+\frac{H_0{l}_0}{4}+{\displaystyle \sum_{i=1}^{\infty}\left[\left({f}_i^S+\frac{l_0}{2}{H}_i^S+\frac{l_i^S}{2}{H}_0\right) \sin \left(i\omega t\right)+\left({f}_i^C+\frac{l_0}{2}{H}_i^C+\frac{l_i^C}{2}{H}_0\right) \cos \left(i\omega t\right)\right]}+ $$
$$ \begin{array}{l}+{\displaystyle \sum_{i=1}^{+\infty }{\displaystyle \sum_{n=1}^i{l}_n^S\left[{H}_{i-n+1}^S \sin \left[\left(i-n+1\right)\omega t\right]+{H}_{i-n+1}^C \cos \left[\left(i-n+1\right)\omega t\right]\right]}} \sin \left(n\omega t\right)+\\ {}+{\displaystyle \sum_{i=1}^{+\infty }{\displaystyle \sum_{n=1}^i{l}_n^C\left[{H}_{i-n+1}^S \sin \left[\left(i-n+1\right)\omega t\right]+{H}_{i-j+1}^C \cos \left[\left(i-n+1\right)\omega t\right]\right]}} \cos \left(n\omega t\right).\end{array} $$
(163)

By projecting σs(t) over sin(ωt) and cos(ωt), Eqs. (3.94)-(3.95) of the storage and loss moduli are recovered.In order to evaluate the derivatives ∂S/∂ω and ∂L/∂ω, ∂H S i /∂ω and ∂H C i  /∂ω can be derived from Eqs. (3.91)-(3.93), i.e.,

$$ \frac{\partial {H}_i^S}{\partial \omega }=\frac{\partial {h}_i^S}{\partial \omega }{\displaystyle {\int}_0^{+\infty}\dot{k}(s)} \cos \left(i\omega s\right)ds-{h}_i^S{\displaystyle {\int}_0^{+\infty } is\dot{k}(s)} \sin \left(i\omega s\right)ds $$
$$ -\frac{\partial {h}_i^C}{\partial \omega }{\displaystyle {\int}_0^{+\infty}\dot{k}(s)} \sin \left(i\omega s\right)ds-{h}_i^C{\displaystyle {\int}_0^{+\infty } is\dot{k}(s)} \cos \left(i\omega s\right)ds $$
(164)
$$ \frac{\partial {H}_i^S}{\partial \omega }=\frac{\partial {h}_i^S}{\partial \omega }{\displaystyle {\int}_0^{+\infty}\dot{k}(s)} \sin \left(i\omega s\right)ds-{h}_i^S{\displaystyle {\int}_0^{+\infty } is\dot{k}(s)} \cos \left(i\omega s\right)ds $$
$$ -\frac{\partial {h}_i^C}{\partial \omega }{\displaystyle {\int}_0^{+\infty}\dot{k}(s)} \cos \left(i\omega s\right)ds-{h}_i^C{\displaystyle {\int}_0^{+\infty } is\dot{k}(s)} \sin \left(i\omega s\right)ds $$
(165)

provided that the integrability condition (3.96) holds. As a consequence, when assessed at low frequencies, the result is

$$ \frac{\partial {H}_i^S}{\partial \omega}\left|{}_{\omega =0}\right.=\left({k}_{\infty }-{k}_0\right)\frac{\partial {h}_i^S}{\partial \omega}\left|{}_{\omega =0}\right.-{h}_i^C\left|{}_{\omega =0}\right.i{\displaystyle {\int}_0^{+\infty }s\dot{k}(s)ds} $$
(166)
$$ \frac{\partial {H}_i^C}{\partial \omega}\left|{}_{\omega =0}\right.=\left({k}_{\infty }-{k}_0\right)\frac{\partial {h}_i^C}{\partial \omega}\left|{}_{\omega =0}\right.-{h}_i^S\left|{}_{\omega =0}\right.i{\displaystyle {\int}_0^{+\infty }s\dot{k}(s)ds} $$
(167)

and, therefore, these sensitivities depend upon the sensitivities of the constitutive functions h S i and h C i , respectively. To evaluate these quantities, let us assume that the functions f, l and h are analytic with respect to E1. By expanding h in Taylor series, as in Eq. (156), and by projecting over sin(iωt) and cos(iωt), the Fourier coefficients h C i and h S i are obtained, e.g.,

$$ {h}_i^S={\displaystyle \sum_{p=0}^{\infty }{\displaystyle \sum_{q=0}^p\frac{\omega^{p-q}{E}_1^p}{q!\left(p-q\right)!}}}{h}^{\left(q,p-q\right)}\left({E}_0\right){{\displaystyle {\int}_{-1}^1 \sin \left(\pi s\right)}}^q \cos {\left(\pi s\right)}^{p-q} \sin \left( i\pi s\right) ds $$
(168)
$$ {h}_i^C={\displaystyle \sum_{p=0}^{\infty }{\displaystyle \sum_{q=0}^p\frac{\omega^{p-q}{E}_1^p}{q!\left(p-q\right)!}}}{h}^{\left(q,p-q\right)}\left({E}_0\right){{\displaystyle {\int}_{-1}^1 \sin \left(\pi s\right)}}^q \cos {\left(\pi s\right)}^{p-q} \cos \left( i\pi s\right) ds $$
(169)

When assessing h C i and h S i at ω → 0, the only term not vanishing in the infinite summations (168) and (169) are those corresponding to n = m, that is

$$h_i^S\left| {_{\omega = 0}} \right. = \mathop \sum \limits_{p = 0}^\infty \frac{{E_1^p}}{{p!}}{h^{\left( {p{\rm{,}}0} \right)}}\left( {{E_0}} \right)\mathop \smallint \limits_{ - 1}^1 \sin {\left( {\pi s} \right)^p}\sin \left( {i\pi s} \right)ds\left\{ {\begin{array}{*{20}{c}} { = 0,}&{iEven}\\ { \ne 0,}&{iOdd} \end{array}} \right.$$
(170)
$$h_i^C\left| {_{\omega = 0}} \right. = \mathop \sum \limits_{p = 0}^\infty \frac{{E_1^p}}{{p!}}{h^{\left( {p{\rm{,}}0} \right)}}\left( {{E_0}} \right)\mathop \smallint \limits_{ - 1}^1 \sin {\left( {\pi s} \right)^p}\cos \left( {i\pi s} \right)ds\left\{ {\begin{array}{*{20}{c}} { = 0,}&{iOdd}\\ { \ne 0,}&{iEven} \end{array}} \right.$$
(171)

with the corresponding derivatives given by

$$\frac{{\partial h_i^S}}{{\partial \omega }}\left| {_{\omega = 0}} \right. = \mathop \sum \limits_{p = 0}^\infty \frac{{E_1^p}}{{\left( {p - 1} \right)!}}{h^{^{\left( {p - 1,1} \right)}}}\left( {{E_0}} \right)\mathop \smallint \limits_{ - 1}^1 \sin {\left( {\pi s} \right)^{p - 1}}\cos \left( {\pi s} \right)\sin \left( {i\pi s} \right)ds\left\{ {\begin{array}{*{20}{c}} { = 0,}&{iOdd}\\ { \ne 0,}&{iEven} \end{array}} \right.$$
(172)
$$\frac{{\partial h_i^C}}{{\partial \omega }}\left| {_{\omega = 0}} \right. = \mathop \sum \limits_{p = 0}^\infty \frac{{E_1^p}}{{\left( {p - 1} \right)!}}{h^{^{\left( {p - 1,1} \right)}}}\left( {{E_0}} \right)\mathop \smallint \limits_{ - 1}^1 \sin {\left( {\pi s} \right)^{p - 1}}\cos \left( {\pi s} \right)\sin \left( {i\pi s} \right)ds\left\{ {\begin{array}{*{20}{c}} { = 0,}&{iEven}\\ { \ne 0,}&{iOdd} \end{array}} \right.$$
(173)

As a result, the sensitivities ∂H S i /∂ω and ∂H S i /∂ω can be assessed at ω = 0, i.e.

$$\frac{{\partial H_i^S}}{{\partial \omega }}\left| {_{\omega = 0}} \right. = \left\{ {\begin{array}{*{20}{c}} { = 0,}&{iOdd}\\ { \ne 0,}&{iEven} \end{array}} \right.$$
(174)
$$\frac{{\partial H_i^C}}{{\partial \omega }}\left| {_{\omega = 0}} \right. = \left\{ {\begin{array}{*{20}{c}} { = 0,}&{iEven}\\ { \ne 0,}&{iOdd} \end{array}} \right.$$
(175)

Equations (168)–(173) allow the sensitivities of f S i , f C i , l S i and l C i to be estimated and, consequently, Eq. (161) to be recovered.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Marković, G., Marinović-Cincović, M., Jovanović, V., Samaržija-Jovanović, S., Budinski-Simendić, J. (2014). Modeling of Non-Linear Viscoelastic Behavior of Filled Rubbers. In: Ponnamma, D., Thomas, S. (eds) Non-Linear Viscoelasticity of Rubber Composites and Nanocomposites. Advances in Polymer Science, vol 264. Springer, Cham. https://doi.org/10.1007/978-3-319-08702-3_8

Download citation

Publish with us

Policies and ethics