Skip to main content

Non-linear Viscoelastic Behaviour of Rubber-Rubber Blend Composites and Nanocomposites: Effect of Spherical, Layered and Tubular Fillers

  • Chapter
  • First Online:

Part of the book series: Advances in Polymer Science ((POLYMER,volume 264))

Abstract

This chapter deals with the non-linear viscoelastic behaviour of rubber-rubber blend composites and nanocomposites with fillers of different particle size. The dynamic viscoelastic behaviour of the composites has been discussed with reference to the filler geometry, distribution, size and loading. The filler characteristics such as particle size, geometry, specific surface area and the surface structural features are found to be the key parameters influencing the Payne effect. Non-linear decrease of storage modulus with increasing strain has been observed for the unfilled vulcanizates. The addition of spherical or near-spherical filler particles always increase the level of both the linear and the non-linear viscoelastic properties. However, the addition of high-aspect-ratio, fiber-like fillers increase the elasticity as well as the viscosity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

0D:

Zero dimensional

1D:

One dimensional

AFM:

Atomic force microscopy

APS:

Aminopropyltrimethoxysilane

APTMS:

3-Aminopropyltrimethoxysilane

BMI:

1-Butyl 3-methyl imidazoliumbis (trifluoromethylsulphonyl) imide

C15A:

Dimethyl dehydrogenated tallow alkyl ammonium cation as modifier

C30B:

Bis(2-hydroxyethyl)-methyl tallow alkyl ammonium cation as modifier

CB:

Carbon black

CBs:

Carbon blacks

CCVD:

Catalytic chemical vapour deposition

CNF:

Carbon nanofiber

CNTs:

Carbon nanotubes

CO:

Carbon dioxide

CR:

Chloroprene rubber

DMA:

Dynamic mechanical analysis

DMS:

Diethoxydimethylsilane

DMTA:

Dynamic mechanical thermal analysis

DPD:

Dissipative particle dynamics model

DTAB:

Dodecyltrimethylammonium bromide

E′:

Storage modulus

E″:

Loss modulus

EVA:

Ethylene vinyl acetate copolymer

GCB:

Grafted carbon black

GNPs:

Graphene nanoparticles

GO:

Graphite oxide

HNBR:

Hydrogenated nitrile rubbers

HNTs:

Halloysite nanotubes

HT:

Hydrotalcite

IPTMS:

3-Isocyanatopropyltrimethoxysilane

LCM:

Liquid compounding method

LDHs:

Layered double hydroxides

LTG-HNBR:

Low-temperature-grade hydrogenated acrylonitrile butadiene rubber

MMT:

Montmorillonite

MWCNT:

Multi walled carbon nanotubes

NBR:

Nitrile-butadiene rubber

NO:

Nitrous oxide

NR:

Natural rubber

NR:

Natural rubber

OMMT:

Organically modified montmorillonite

PLA:

Polylactic acid

PNCs:

Polymer nanocomposites

RPA:

Rubber-Process-Analyzer

SBR:

Styrene butadiene rubber

SBR–clay NC:

SBR–clay nanocomposite

SDBS:

Sodium dodecyl benzene sulfonate

SDS:

Sodium dodecyl sulfate

SEN-T:

Single edge notched tensile loaded

SH:

Sodium humate

SSBR:

Solution styrene butadiene rubber

SWCNT:

Single walled carbon nanotubes

TEM:

Transmission electron microscopy

Tg:

Glass transition temperature

TiO2 :

Titanium dioxide

TRG:

Thermally reduced graphene oxide

XNBR:

Carboxylated nitrile rubber

References

  1. Medalia A, Krauss G (1994) Reinforcement of elastomers by particulate fillers. In: Mark JE, Erman B, Erich FR (eds) Science and technology of rubber, 2nd edn. Academic, San Diego, CA, pp 387–418

    Google Scholar 

  2. Sternstein SS, Zhu AJ (2002) Macromolecules 35:7262

    CAS  Google Scholar 

  3. Lin G, Tian M, Lu YL, Zhang XJ, Zhang LQ (2006) Polymer 38:498–502

    CAS  Google Scholar 

  4. Yahaya LE, Adebowale KO, Menon ARR, Rugmini S, Olu-Owolabi BI, Chameswary J (2010) Afr J Pure Appl Chem 4:198–205

    CAS  Google Scholar 

  5. Sui G, Zhong WH, Yang XP, Yu YH (2008) Mater Sci Eng 485:524–531

    Google Scholar 

  6. Gonzalez JC, Retsos H, Verdejo R, Toki S, Hsiao BS, Giannelis EP, Lopez-Manchado MA (2008) Macromolecules 41:6763–6772

    Google Scholar 

  7. Al-Hartomy OA, Al-Ghamdi AA, Al-Salamy F, Dishovsky N, Shtarkova R, Iliev V, El-Tantawy FI (2012) J Mater Chem 2:116–122

    Google Scholar 

  8. Kim H, Miura Y, Macosko CW (2010) Chem Mater 22:3441–3450

    CAS  Google Scholar 

  9. Coran AY (1980) Rubber Chem Technol 53:141

    CAS  Google Scholar 

  10. Kim HJ, Hamed GR (2000) Rubber Chem Technol 73:743–752

    CAS  Google Scholar 

  11. Botros SH, Younan AF, Essa MM (2000) Mol Cryst Liq Cryst Sci Technol A 354:409–420

    CAS  Google Scholar 

  12. Saad Azima LG, El-Sabbagh S, Salwa S (2001) J Appl Polym Sci 79:60–71

    Google Scholar 

  13. Perera MCS, Ishiaku US, Ishak ZAM (2000) Polym Degrad Stab 68:393–402

    CAS  Google Scholar 

  14. Lapa VLC, Visconte LLY, Affonso JES, Nunes RCR (2002) Polym Test 21:443–447

    CAS  Google Scholar 

  15. Sircar AK, Lamond TG, Pinter PE (1974) Rubber Chem Technol 47:48

    CAS  Google Scholar 

  16. Massie JM, Hirst RC, Halasa AF (1993) Rubber Chem Technol 66:276

    CAS  Google Scholar 

  17. Kluppel M, Schuster RH, Schaper (1999) J Rubber Chem Technol 72:91

    CAS  Google Scholar 

  18. Hess HM, Scott CE, Callan JE (1967) Rubber Chem Technol 40:814

    Google Scholar 

  19. Jeon IH, Kim H, Kim SG (2004) Rubber Chem Technol 76:1

    Google Scholar 

  20. Maiti S, De SK, Bhowmick AK (1992) Rubber Chem Technol 65:293

    CAS  Google Scholar 

  21. Kumar AP, Depan D, Singh Tomer N, Singh RP (2009) Prog Polym Sci 34:479–515

    CAS  Google Scholar 

  22. Li Y, Yu J, Guo ZX (2002) J Appl Polym Sci 84:827–834

    CAS  Google Scholar 

  23. Dubois C, Rajabian M, Rodrigue D (2006) Polym Eng Sci 46:360–371

    CAS  Google Scholar 

  24. Yan S, Yin J, Yang Y, Dai Z, Ma J, Chen X (2007) Polymer 48:1688–1694

    CAS  Google Scholar 

  25. Shu CH, Chiang HC, Tsiang RCC, Liu TJ, Wu JJ (2007) J Appl Polym Sci 103:3985–3993

    CAS  Google Scholar 

  26. Garrett TM, Gruzins I (1996) Modified polyurethane including silica and method of manufacture thereof. US Patent 5,484,832

    Google Scholar 

  27. Chen S, Sui J, Chen L (2004) Colloid Polym Sci 283:66–73

    CAS  Google Scholar 

  28. Yoichi I, Takashi N, Shigeyoshi M (2006) J Dispers Sci Technol 27:1093

    Google Scholar 

  29. Ukaji E, Furusawa TM, Suzuki N (2007) Appl Surf Sci 254:563–569

    CAS  Google Scholar 

  30. Sabzi M, Mirabedini SM, Zohuriaan-Mehr J, Atai M (2009) Prog Org Coat 65:222–228

    CAS  Google Scholar 

  31. Wang C, Mao H, Wang C, Fu S (2011) Ind Eng Chem Res 50:11930–11934

    CAS  Google Scholar 

  32. Zhao J, Milanova M, Warmoeskerken MMCG, Dutschk V (2012) Colloids Surf A 413:273–279

    Google Scholar 

  33. Sato K, Kondo S, Tsukada M, Ishigaki T, Kamiya H (2007) J Am Ceram Soc 90:3401–3406

    CAS  Google Scholar 

  34. Moniruzzaman M, Winey KI (2006) Macromolecules 39:5194

    CAS  Google Scholar 

  35. Hutchison JL, Kiselev NA, Krinichnaya EP, Krestinin AV, Loufty RO, Morawsky AP et al (2001) Carbon 39:761

    CAS  Google Scholar 

  36. Zhang Y, Iijima S (1999) Appl Phys Lett 75:3087

    CAS  Google Scholar 

  37. Endo M, Hayashi T, Kim YA, Muramatsu H (2006) Jpn J Appl Phys 45:4883

    CAS  Google Scholar 

  38. Bose S, Khare RA, Moldenaers P (2010) Polymer 51:975

    CAS  Google Scholar 

  39. Rastogi R, Kaushal R, Tripathi S, Sharma AL, Kaur I, Bharadwaj LM (2008) J Colloid Interface Sci 328:421

    CAS  Google Scholar 

  40. Vaisman L, Wagner HD, Marom G (2006) Adv Colloid Interface Sci 12:37

    Google Scholar 

  41. Ciofani G, Raffa V, Pensabene V, Menciassi A, Dario P (2009) Fullerenes Nanotubes Carbon Nanostruct 17:11

    Google Scholar 

  42. Matarredona O, Rhoads H, Li Z, Harwell JH, Balzano L, Resasco DE (2003) J Phys Chem B 107:13357–13367

    CAS  Google Scholar 

  43. Wang Q, Han Y, Wang Y, Qin Y, Guo Z (2008) J Phys Chem B 112:7227

    CAS  Google Scholar 

  44. Jung R, Kim HS, Jin HJ (2007) Macromol Symp 249:259

    Google Scholar 

  45. Islam MF, Rojas E, Bergey DM et al (2003) Nano Lett 3:269

    CAS  Google Scholar 

  46. Yu J, Grossiord N, Koning CE, Loos J (2007) Carbon 45:618

    CAS  Google Scholar 

  47. Jeffrey LB, James MT (2002) J Mater Chem 12:1952–1958

    Google Scholar 

  48. Choi SUS, Zhang ZG, Yu W, Lockwood FE, Grulke EA (2001) Appl Phys Lett 79:2252

    CAS  Google Scholar 

  49. Biercuk MJ, Llaguno MC, Radosavljevic M, Hyun JK, Johnson AT, Fischer JE (2002) Appl Phys Lett 80:2767

    CAS  Google Scholar 

  50. Buxton GA, Balazs AC (2004) Mol Simul 30:249

    CAS  Google Scholar 

  51. Gojny FH, Wichmann MHG, Fiedler B, Kinloch IA, Bauhofer W, Windle AH, Schulte K (2006) Polymer 47:2036

    CAS  Google Scholar 

  52. Kirkman JH (1977) Clay Miner 12:199

    CAS  Google Scholar 

  53. Kamble R, Ghag M, Gaikawad S, Panda BK (2012) J Adv Sci Res 3(2):25–29

    Google Scholar 

  54. Thomas S, Stephen R (eds) (1985) Rubber nanocomposites. preparation, properties and application. Wiley, New York, p 209

    Google Scholar 

  55. Fukushima Y, Tani M (1996) Bull Chem Soc Jpn 69:3667

    CAS  Google Scholar 

  56. Giannelis EP, Krishnamoorti R, Manias E (1999) Adv Polym Sci 138:107

    CAS  Google Scholar 

  57. Alexandre M, Dubois P (2000) Mater Sci Eng 28:1

    Google Scholar 

  58. Ray SS, Okamoto M (2003) Progr Polym Sci 28:1539

    CAS  Google Scholar 

  59. Zümreoglu KB, Ahmet NAV (2012) Chem Pap 66:1–10

    Google Scholar 

  60. Kuilla T, Bhadra S, Yao D, Kim NH, Bosed S, Lee JH (2010) Prog Polym Sci 35:1350

    CAS  Google Scholar 

  61. Li D, Muller MB, Gilje S, Kaner RB, Wallac GG (2007) Nat Nanotechnol 3:101

    Google Scholar 

  62. Aizawa T, Souda R, Otani S, Ishizawa Y, Oshima C (1990) Phys Rev Lett 64:768

    CAS  Google Scholar 

  63. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666

    CAS  Google Scholar 

  64. Stankovich SD, Piner DA, Kohlhaas RD, Kleinhammes KAA et al (2007) Carbon 45:1558

    CAS  Google Scholar 

  65. Rao CNR, Sood AK, Voggu R, Subrahmanyam KS (2010) J Phys Chem Lett 1:572

    CAS  Google Scholar 

  66. Wolff S, Donnet JB (1990) Rubber Chem Technol 63:32

    CAS  Google Scholar 

  67. Brennan JJ, Jermyn TE, Bonnstra BB (1964) J Appl Polym Sci 8:2687

    CAS  Google Scholar 

  68. Payne AR (1965) Reinforcement of elastomers. Wiley, New York

    Google Scholar 

  69. Payne AR, Whittaker RE (1971) Rubber Chem Technol 44:440

    CAS  Google Scholar 

  70. Medalia AI (1978) Rubber Chem Technol 51:437

    CAS  Google Scholar 

  71. Fletcher WP, Gent AN (1953) Trans IRI 29:166

    Google Scholar 

  72. Payne AR (1962) J Appl Polym Sci 6:57

    CAS  Google Scholar 

  73. Payne AR (1964) J Appl Polym Sci 8:1661

    Google Scholar 

  74. Heinrich G, Klüppel M (2002) Adv Polym Sci 160:1–44

    CAS  Google Scholar 

  75. Diani J, Fayolle B, Gilormini P (2009) Eur Polym J 45:601

    CAS  Google Scholar 

  76. Kalfus J, Jancar J (2007) J Polym Sci B Polym Phys 45:1380

    CAS  Google Scholar 

  77. Cassagnau P (2008) Polymer 49:2183

    CAS  Google Scholar 

  78. Zhu A, Sternstein SS (2003) Compos Sci Technol 63:1113

    CAS  Google Scholar 

  79. Mullins L (1969) Rubber Chem Technol 42:339

    CAS  Google Scholar 

  80. Maier PG, Goritz D (1996) Kautsch Gummi Kunstst 49:18

    CAS  Google Scholar 

  81. Maier PG, Goritz D (1993) Kautsch Gummi Kunstst 46:11

    Google Scholar 

  82. Maier PG, Goritz D (2000) Kautsch Gummi Kunstst 53:12

    Google Scholar 

  83. Yatsuyanagi F, Kaidou H, Ito M (1999) Rubber Chem Technol 4:657

    Google Scholar 

  84. Cassagnau P (2003) Polymer 44:2455

    CAS  Google Scholar 

  85. Berriot J, Lequeux F, Montes H, Monnerie L, Long D, Sotta P (2002) J Non-Cryst Solids 307:719

    Google Scholar 

  86. Berriot J, Montes H, Lequeux F, Long D, Sotta P (2002) Macromolecules 35:9756

    CAS  Google Scholar 

  87. Berriot J, Montes H, Lequeux F, Long D, Sotta P (2003) Europhys Lett 64:50

    CAS  Google Scholar 

  88. Jouault N, Vallat P, Dalmas F, Said S, Jestin J, Boue F (2009) Macromolecules 42:2031

    CAS  Google Scholar 

  89. Merabia S, Sotta P, Long DR (2008) Macromolecules 41:8252

    CAS  Google Scholar 

  90. Farahani TD, Bakhshandeh GR, Abtahi M (2006) Polym Bull 56:495–505

    Google Scholar 

  91. Donnet JB, Bansal RC, Wang MJ (1993) Carbon black science and technology. Marcel Dekker, New York

    Google Scholar 

  92. Vilgis TA (2005) Polymer 46:4223–4229

    CAS  Google Scholar 

  93. Kohjiya S, Katoh A, Suda T, Shimanuki J, Ikeda Y (2006) Polymer 47:3298–3301

    CAS  Google Scholar 

  94. Wootthikanokkhan J, Rattanathamwat N (2006) J Appl Polym Sci 102:248–256

    CAS  Google Scholar 

  95. Sirisinha C, Prayoonchatphan N (2001) J Appl Polym Sci 81:3198–3203

    CAS  Google Scholar 

  96. Kader MA, Bhowmick AK (2003) J Appl Polym Sci 89:1442–1452

    CAS  Google Scholar 

  97. Saowaroj C, Wasuthep L (2011) J Elastomers Plast 43:407

    Google Scholar 

  98. Das A, Stockelhuber KW, Jurk R, Saphiannikova M, Fritzsche J, Kluppel M, Heinrich G, Lorenz H (2008) Polymer 49:5276–5283

    CAS  Google Scholar 

  99. Payne AR (1965) In: Kraus G (ed) Reinforcement of elastomers, Chap 3. Inter-science, New York

    Google Scholar 

  100. Anyaporn B, Saowaroj C (2012) J Met Mater Miner 22:77–85

    Google Scholar 

  101. Pattana K, Pongdhorn S, Chakrit S, Karl IJ, Nittaya R (2013) Polym Test 32:1229–1236

    Google Scholar 

  102. Le HH, Sriharish MN, Henning S, Klehm J, Menzel M, Frank W, Wießner S, Stöckelhuber KW, Heinrich G, Radusch HJ, Das A (2014) Compos Sci Technol 90:180–186

    CAS  Google Scholar 

  103. Yan N, Xia HS, Zhan YH, Fei GX, Chen C (2012) Plast Rubber Compos 4:365

    Google Scholar 

  104. Roberts GE (1973) In: Haward RN (ed) The physics of glassy polymers. New York, Wiley

    Google Scholar 

  105. Perera MC (2001) Eur Polym J 37:167

    Google Scholar 

  106. Das A, Mahaling RN, Stöckelhuber KW, Heinrich G (2011) Compos Sci Technol 71:276–281

    CAS  Google Scholar 

  107. Ranimol S, Raju KVSN, Siby V, Kuruvilla J, Zachariah O, Sabu T (2007) Rubber Chem Technol 80:672–689

    Google Scholar 

  108. Das A, Stockelhuber KW, Heinrich G (2009) Macromol Chem Phys 210:189–199

    CAS  Google Scholar 

  109. Tomova D, Kressler J, Radusch HJ (2000) Polymer 41:7773

    CAS  Google Scholar 

  110. Zheng G, Li G, Guojun S, Weisheng L, Peiyao L, Chunpeng S (2010) Appl Clay Sci 50:143–147

    Google Scholar 

  111. Gatos KG, Karger KJ (2005) Polymer 46:3069–3076

    CAS  Google Scholar 

  112. Ahmadi SJ, Huang YD, Li W (2005) Compos Sci Technol 65:1069–1076

    CAS  Google Scholar 

  113. Tian M, Cheng LJ, Liang WL (2006) J Appl Polym Sci 101:2725–2731

    CAS  Google Scholar 

  114. Rajasekar R, Pal K, Heinrich G, Das A, Das CK (2009) Mater Des 30:3839–3845

    CAS  Google Scholar 

  115. Malas A, Pal P, Das CK, Malas A et al (2014) Mater Des 55:664–673

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rani Joseph .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nair, A.B., George, N., Joseph, R. (2014). Non-linear Viscoelastic Behaviour of Rubber-Rubber Blend Composites and Nanocomposites: Effect of Spherical, Layered and Tubular Fillers. In: Ponnamma, D., Thomas, S. (eds) Non-Linear Viscoelasticity of Rubber Composites and Nanocomposites. Advances in Polymer Science, vol 264. Springer, Cham. https://doi.org/10.1007/978-3-319-08702-3_5

Download citation

Publish with us

Policies and ethics