Skip to main content

Nonlinear Viscoelasticity in Three Dimensional Filler Reinforced Rubber Composites and Nanocomposites

  • Chapter
  • First Online:

Part of the book series: Advances in Polymer Science ((POLYMER,volume 264))

Abstract

This chapter describes the influence of three-dimensional nanofillers used in elastomers on the nonlinear viscoelastic properties. In particular, this part focuses and investigates the most important three-dimensional nanoparticles, which are used to produce rubber nanocomposites. The rheological and the dynamic mechanical properties of elastomeric polymers, reinforced with spherical nanoparticles, like POSS, titanium dioxide and nanosilica, were described. These (3D) nanofillers in are used polymeric matrices, to create new, improved rubber nanocomposites, and these affect many of the system’s parameters (mechanical, chemical, physical) in comparison with conventional composites. The distribution of the nanosized fillers and interaction between nanofiller-nanofiller and nanofiller-matrix, in nanocomposite systems, is crucial for understanding their behavior under dynamic-mechanical conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

0D:

Zero-dimensional nanoparticle

3D:

Three-dimensional nanofiller

AC:

Coupling agent

ACM:

Acrylic rubber

APMDS:

Aminopropylmethyldiethoxysilane

APTS:

3-Aminopropyltrimethoxysilane

AR:

Covering agent

ENR:

Epoxidized natural rubber

HDTMS:

Hexsadecyltrimethoxysilane

MPTS:

Methacryloxypropyltriethoxysilane

MWCNT:

Multiwall carbon nanotubes

POSS:

Polyhedral oligomeric silsesquioxane

RNC:

Rubber nanocomposites

RTV:

Room Temperature Vulcanizing silicone

TDSS:

Tetrakis(dimethylsiloxy)silane

TEOS:

Tetraethoxysilane

TESPD:

Bis-(triethoxysilylpropyl)-disulfane

Tg :

Glass transition temperature

References

  1. Bikiaris D (2011) Can nanoparticles really enhance thermal stability of polymers? Part II: An overview on thermal decomposition of polycondensation polymers. Thermochim Acta 523(1–2):25–45

    Article  CAS  Google Scholar 

  2. Sarvestani AS (2010) Nonlinear rheology of unentangled polymer melts reinforced with high concentration of rigid nanoparticles. Nanoscale Res Lett 5(4):791–794

    Article  CAS  Google Scholar 

  3. Payne AR (1962) The dymanic properties of carbon black-loaded natural rubber vulcanizates. Part I. J Appl Polym Sci 6:57

    Article  CAS  Google Scholar 

  4. Payne AR (1965) Reinforcement of elastomers, Chap. 3. Interscience, New York, pp 69–123

    Google Scholar 

  5. Ajayan PM, Schadler LS, Braun PV (2003) Nanocomposite science and technology. Wiley, Weinheim

    Book  Google Scholar 

  6. Mukhopadhyay AM (2012) Nanoscale multifunctional materials, science and applications. Wiley, Mississauga, ON

    Google Scholar 

  7. Li G, Wang L, Ni H Jr, CUP (2002) Polyhedral oligomeric silsesquioxane (POSS) polymers and copolymers: a review. J Inorg Org Polym 11(3):123–154

    Article  Google Scholar 

  8. Cordes DB, Lickiss PD, Rataboul F (2010) Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes. Chem Rev 110(4):2081–2173

    Article  CAS  Google Scholar 

  9. Ayandele E, Sarkar B, Alexandridis P (2012) Polyhedral oligomeric silsesquioxane (POSS)-containing polymer nanocomposites. Nanomaterials 2(4):445–475

    Article  CAS  Google Scholar 

  10. Markovic E, ConstantopolousK, Matisons JG (2011) In: Hartmann-Thompson C (ed) Applications of polyhedral oligomeric silsesquioxanes, vol 3. Springer, Dordrecht, pp 1–46

    Google Scholar 

  11. Gnanasekaran D, Madhavan K, Reddy BSR (2009) Developments of polyhedral oligomeric silsesquioxanes (POSS), POSS nanocomposites and their applications: a review. J Sci Ind Res 68:437–464

    CAS  Google Scholar 

  12. Pielichowski K, Janowski JNB (2006) Polyhedral oligomeric silsesquioxanes (POSS) - containing nanohybrid polymers. Adv Polym Sci 201:225–296

    Article  CAS  Google Scholar 

  13. Koo JH (2009) Polymer nanocomposites, processing, characterization and applications, Chap. 2. An overview of nanoparticles. McGraw-Hill, New York

    Google Scholar 

  14. Phillips SH, Haddad TS, Tomczak SJ (2004) Developments in nanoscience. Polyhedral oligomeric silsesquioxane (POSS)-polymers. Curr Opin Sold State Mater Sci 8:21–29

    Article  CAS  Google Scholar 

  15. http://www.hybridplastics.com

  16. Rahman IA, Padavettan V (2012) Synthesis of silica nanoparticles by sol–gel: size-dependent properties, surface modification, and applications in silica-polymer nanocomposites—a review. J Nanomater 1–15

    Google Scholar 

  17. Sabu T, Ranimol S (2010) Rubber nanocomposites, preparation, properties and application. Wiley, Singapore

    Google Scholar 

  18. Bandyopadhyay A, de Sarkar M, Bhowmick AK (2005) Polymer-filler interactions in sol–gel derived polymer/silica hybrid nanocomposites. J Polym Sci B Polym Phys 43(17):2399–2412

    Article  CAS  Google Scholar 

  19. Kickelbick G (2003) Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale. Prog Polym Sci 28(1):83–114

    Article  CAS  Google Scholar 

  20. Shu H, Li X, Zhang Z (2008) Surface modified nano-silica and its action on polymer. Prog Chem 20(10):1509–1514

    CAS  Google Scholar 

  21. Kang S, Hong SI, Choe CR, Park M, Rim S, Kim J (2001) Preparation and characterization of epoxy composites filled with functionalized nanosilica particles obtained via sol–gel process. Polymer 42(3):879–887

    Article  CAS  Google Scholar 

  22. Yu YY, Chen CY, Chen WC (2002) Synthesis and characterization of organic–inorganic hybrid thin films from poly(acrylic) and monodispersed colloidal silica. Polymer 44(3):593–601

    Article  Google Scholar 

  23. Yu YY, Chen WC (2003) Transparent organic–inorganic hybrid thin films prepared from acrylic polymer and aqueous monodispersed colloidal silica. Mater Chem Phys 82(2):388–395

    Article  CAS  Google Scholar 

  24. Vega-Baudrit J, Navarro-Banon V, Vazquez P, Martin-Martinez JM (2006) Addition of nanosilicas with different silanol content to thermoplastic polyurethane adhesives. Int J Adhes Adhes 26(5):378–387

    Article  CAS  Google Scholar 

  25. Rodriguez JGI, Carreira P, Diez A, Hui G, Artiaga DR, Marzan LML (2007) Nanofiller effect on the glass transition of a polyurethane. J Therm Anal Calorim 87(1):45–47

    Article  Google Scholar 

  26. Chen Y, Zhou S, Yang H, Gu G, Wu L (2004) Preparation and characterization of nanocomposite polyurethane. J Colloid Interface Sci 279(2):370–378

    Article  CAS  Google Scholar 

  27. https://www.aerosil.com

    Google Scholar 

  28. Zou H, Wu S, Shen J (2008) Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem Rev 108(9):3893–3957

    Article  CAS  Google Scholar 

  29. Pal M, Garcı J (2007) Size-controlled synthesis of spherical TiO2 nanoparticles: morphology, crystallization, and phase transition. J Phys Chem C 111:96–102

    Article  CAS  Google Scholar 

  30. Campet G, Han SD, Duguet E, Portier J (1994) TiO2-polymer nano-composites by sol–gel. J Sol-gel Sci Technol 2:121–125

    Article  Google Scholar 

  31. Mahshid S, Ghamsari MS, Askari M, Afshar N, Lahuti S (2006) Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution. J Mater Process Technol 9:65–68

    CAS  Google Scholar 

  32. Funda S, Meltem A, Şadiye Ş, Sema E, Murat E, Hikmet S (2007) Hydrothermal synthesis, characterization and photocatalytic activity of nanosized TiO2, based catalysts for rhodamine B degradation. Turk J Chem 31:211–221

    Google Scholar 

  33. Kim TK, Lee MN, Lee SH, Park YC, Jung CK, Boo JH (2005) Development of surface coating technology of TiO2 powder and improvement of photocatalytic activity by surface modification. Thin Solid Films 475:71–177

    Google Scholar 

  34. Ahmad A, Awan GH, Aziz S (2007) Synthesis and application of TiO2 nanoparticles. In: Pakistan engineering congress, 70th annual session proceedings, vol 676, pp 404–412

    Google Scholar 

  35. Nussbaumer J, Caseri WR, Smith P, Tervoort T (2003) Polymer-TiO2 nanocomposites: a route towards visually transparent broadband UV filters and high refractive index materials. Macromol Mater Eng 288(1):44–49

    Article  CAS  Google Scholar 

  36. Pandey JK, Reddy KR, Kumar AP, Singh RP (2005) An overview on the degradability of polymer nanocomposites. Polym Degrad Stab 898:234–250

    Article  Google Scholar 

  37. Chaudhari S, Shaikh T, Pandey P (2013) A review on polymer TiO2 nanocomposites. Int J Eng Res Appl 3(5):1386–1391

    Google Scholar 

  38. Arantes TM, Leão KV, Tavares MIB, Ferreira AG, Longo E, Camargo ER (2009) NMR study of styrene-butadiene rubber (SBR) and TiO2 nanocomposites. Polym Test 28(5):490–494

    Article  CAS  Google Scholar 

  39. Evonik Industries (2011) Inorganic materials for catalyst innovation. Industry Information 2242

    Google Scholar 

  40. Cuppoletti J (2011) Nanocomposites and polymers with analytical methods. INTECH Open Access, Rijeka

    Book  Google Scholar 

  41. Varghese S, Karger-Kocsis J (2004) Melt-compounded natural rubber nanocomposites with pristine and organophilic layered silicates of natural and synthetic origin. J Appl Polym Sci 91:813

    Article  CAS  Google Scholar 

  42. Zhang H, Wang Y, Wu Y (2005) Study on flammability of montmorillonite/styrene-butadiene rubber (SBR) nanocomposites. J Appl Polym Sci 97:844

    Article  CAS  Google Scholar 

  43. Kim JT, OhTS LDH (2003) Preparation and characteristics of nitrile rubber (NBR) nanocomposites based on organophilic layered clay. Polym Int 52:1058

    Article  CAS  Google Scholar 

  44. Gatos KG, Thomann R, Karger-kocsis J (2004) Characteristics of ethylene propylene diene monomer rubber/organoclay nanocomposites resulting from different processing conditions and formulations. Polym Int 53:1191

    Article  CAS  Google Scholar 

  45. Tien Y, Wei K (2001) Hydrogen bonding and mechanical properties in segmented montmorillonite/polyurethane nanocomposites of different hard segment ratios. Polymer 42(7):3213–3221

    Article  CAS  Google Scholar 

  46. Strankowski M, Strankowska J, Gazda M, Piszczyk Ł, Nowaczyk G, Jurga S (2012) Thermoplastic polyurethane/(organically modified montmorillonite) nanocomposites produced by in situ polymerization. Exp Polym Lett 6(8):610–619

    Article  CAS  Google Scholar 

  47. Pan G, Mark JE, Schaefer DW (2003) Synthesis and characterization of fillers of controlled structure based on polyhedral oligomeric silsesquioxane cages and their use in reinforcing siloxane elastomers. J Polym Sci B Polym Phys 41(24):3314–3323

    Article  CAS  Google Scholar 

  48. Kraus GJ (1984) Mechanical losses in carbon black filled rubbers. J Appl Polym Sci Appl Polym Symp 39:75–92

    CAS  Google Scholar 

  49. Casalini R, Bogoslovov R, Qadri SB, Roland CM (2012) Nanofiller reinforcement of elastomeric polyurea. Polymer 53(6):1282–1287

    Article  CAS  Google Scholar 

  50. Meera AP, Said S, Grohens Y, Thomas S (2009) Nonlinear viscoelastic behavior of silica-filled natural rubber nanocomposites. J Phys Chem C 113(42):17997–18002

    Article  CAS  Google Scholar 

  51. Maier PG, Göritz D (1996) Molecular interpretation on the Payne effect. Kautsch Gummi Kunstst 49:18–22

    CAS  Google Scholar 

  52. Peng CC, Göpfert A, Drechsler M, Abetz V (2005) “Smart” silica-rubber nanocomposites in virtue of hydrogen bonding interaction. Polym Adv Technol 16(11–12):770–782

    Article  CAS  Google Scholar 

  53. Ramier J, Gauthier C, Chazeau L, Stelandre L, Guy L (2007) Payne effect in silica-filled styrene – butadiene rubber: influence of surface treatment. J Polym Sci B Polym Phys 45(3):286–298

    Article  CAS  Google Scholar 

  54. Stöckelhuber KW, Svistkov S, Pelevin G, Heinrich G (2011) Impact of filler surface modification on large scale mechanics of styrene butadiene/silica rubber composites. Macromolecules 44(11):4366–4381

    Article  Google Scholar 

  55. Li Q, Zhao S, Pan Y (2010) Structure, morphology and properties of HNBR filled with N550, SiO2, ZDMA, and two of three kinds of fillers. J Appl Polym Sci 117(1):421–427

    CAS  Google Scholar 

  56. Huang X, Fang X, Lu Z, Chen S (2009) Reinforcement of polysiloxane with superhydrophobic nanosilica. J Mater Sci 44(17):4522–4530

    Article  CAS  Google Scholar 

  57. Yang J, Han CR (2013) Dynamics of silica-nanoparticle-filled hybrid hydrogels: nonlinear viscoelastic behavior and chain entanglement network. J Phys Chem C 117(39):20236–20243

    Article  CAS  Google Scholar 

  58. Meera AP, Grohens Y, Luyt AS, Thomas S, Sud B, Maude R, Saint (2009) Tensile stress relaxation studies of TiO2 and nanosilica filled natural rubber composites. Ind Eng Chem Res 48(7):3410–3416

    Article  CAS  Google Scholar 

  59. Bahloul W, Lyon D, Umr C (2010) Morphology and viscoelasticity of PP/TiO2 nanocomposites prepared by in situ sol–gel method. J Polym Sci B Polym Phys 48:1213–1222

    Article  CAS  Google Scholar 

  60. Lu M, He B, Wang L, Ge W, Lu Q, Liu Y, Zhang L (2012) Preparation of polystyrene–polyisoprene core–shell nanoparticles for reinforcement of elastomers. Compos B Eng 43(1):50–56

    Article  Google Scholar 

  61. Ding N, Hao F, Li L, Sun W, Liu L (2012) Study on physical and dynamic properties of BR based composites filled with different particle size magnesia. Appl Mech Mater 217–219:165–173

    Article  Google Scholar 

  62. Bindu P, Thomas S (2013) Viscoelastic behavior and reinforcement mechanism in rubber nanocomposites in the vicinity of spherical nanoparticles. J Phys Chem B 117(41):12632–12648

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michał Strankowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Strankowski, M. (2014). Nonlinear Viscoelasticity in Three Dimensional Filler Reinforced Rubber Composites and Nanocomposites. In: Ponnamma, D., Thomas, S. (eds) Non-Linear Viscoelasticity of Rubber Composites and Nanocomposites. Advances in Polymer Science, vol 264. Springer, Cham. https://doi.org/10.1007/978-3-319-08702-3_4

Download citation

Publish with us

Policies and ethics