Skip to main content

Nonlinear Viscoelasticity of Two Dimensional Filler Reinforced Rubber Nanocomposites

  • Chapter
  • First Online:
Non-Linear Viscoelasticity of Rubber Composites and Nanocomposites

Part of the book series: Advances in Polymer Science ((POLYMER,volume 264))

Abstract

This chapter describes the effect of two dimensional filler particles on the non-linear viscoelastic properties of elastomer nanocomposites. The distribution of nanosized fillers and the existing interactions—nanofiller-nanofiller and nanofiller-matrix—in the nanocomposite systems are crucial for understanding their behavior under dynamic-mechanical conditions. The non-linear stress response of rubbers and its composites to an applied strain is very significant in formulating the material applications. The reported nonlinear viscoelastic properties for composites of two dimentional fillers such as clay and graphene in different elastomer matrices are critically reviewed. Rheological and dynamic mechanical properties of elastomer nanocomposites are mainly dealt with. The addition of 2D filler particles alters the nonlinear behavior of the loss factor with strain mostly by increasing the level of viscometric properties. Moreover the addition of high-aspect-ratio, sheet-like fillers increase the elasticity as well as the viscosity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sadasivuni KK, Ponnamma D, Thomas S, Grohens Y (2014) Evolution from graphite to graphene elastomer composites. Prog Polym Sci 39:749–780

    Article  CAS  Google Scholar 

  2. Sadasivuni KK, Castro M, Saiter A, Delbreilh L, Feller JF, Thomas S, Grohens Y (2013) Development of poly(isobutylene-co-isoprene)/reduced graphene oxide nanocomposites for barrier, dielectric and sensing applications. Mater Lett 96:109–112

    Article  Google Scholar 

  3. Kawahara S, Kawazura T, Sawada T, Isono Y (2003) Preparation and characterization of natural rubber dispersed in nano-matrix. Polymer 44:4527–4531

    Article  CAS  Google Scholar 

  4. Paiphansiri U, Tangboriboonrat P (2005) Prevulcanisation of skim latex: morphology and its use in natural rubber based composite material. Colloid Polym Sci 284:251–257

    Article  CAS  Google Scholar 

  5. Peng Z, Kong LX, Li SD, Chen Y, Huang MF (2007) Self-assembled natural rubber/silica nanocomposites: its preparation and characterization. Compos Sci Technol 67:3130–3139

    Article  CAS  Google Scholar 

  6. Payne AR (1962) The dynamic properties of carbon black-loaded natural rubber vulcanizates. Part I. J Appl Polym Sci 6:57–63

    Article  CAS  Google Scholar 

  7. Kraus GJ (1984) Mechanical losses in carbon black filled rubbers. Appl Polym Sci Appl Polym Symp 39:75–92

    CAS  Google Scholar 

  8. Heinrich G, Kluppel M (2002) Recent advances in the theory of filler networking in elastomers. Adv Polym Sci 160:1–44

    Article  CAS  Google Scholar 

  9. Maier PG, Göritz D (1996) Molecular interpretation on the Payne effect. Kautsch Gummi Kunstst 49:18–21

    CAS  Google Scholar 

  10. Ponnamma D, Sadasivuni KK, Strankowski M, Guo Q, Thomas S (2013) Synergistic effect of multi walled carbon nanotubes and reduced graphene oxides in natural rubber for sensing application. Soft Matter 9:10343–10353

    Article  CAS  Google Scholar 

  11. Ponnamma D, Sadasivuni KK, Strankowski M, Moldenaers P, Thomas S, Grohens Y (2013) Interrelated shape memory and Payne effect in polyurethane/graphene oxide nanocomposites. RSC Adv 3:16068–16079

    Article  CAS  Google Scholar 

  12. Sadasivuni KK, Saiter A, Gautier N, Thomas S, Grohens Y (2013) Effect of molecular interactions on the performance of poly (isobutylene-co-isoprene)/graphene and clay nanocomposites. Colloid Polym Sci 291:1729–1740

    Article  CAS  Google Scholar 

  13. Slonczewski JC, Weiss PR (1958) Band structure of graphite. Phys Rev 109:272

    Article  CAS  Google Scholar 

  14. Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of grapheme. Rev Mod Phys 81:109

    Article  CAS  Google Scholar 

  15. Novoselov K, Geim A, Morozov S, Jiang D, Zhang Y, Dubonos S, Grigorieva I, Firsov A (2004) Electric field effect in atomically thin carbon films. Science 306:666

    Article  CAS  Google Scholar 

  16. Abergel DSL, Apalkov V, Berashevich J, Ziegler K, Chakraborty T (2010) Properties of graphene: a theoretical perspective. Adv Phys 59:261

    Article  CAS  Google Scholar 

  17. Allen MJ, Tung VC, Kaner RB (2009) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145

    Article  Google Scholar 

  18. Yazyev OV (2010) Emergence of magnetism in graphene materials and nanostructures. Rep Prog Phys 73:056501

    Article  Google Scholar 

  19. Cresti A, Nemec N, Biel B, Niebler G, Triozon F, Cuniberti G, Roche S (2008) Charge transport in disordered graphene-based low dimensional materials. Nano Res 1:361

    Article  CAS  Google Scholar 

  20. Beenakker CWJ (2008) Colloquium: Andreev reflection and Klein tunneling in graphene. Rev Mod Phys 80:1337

    Article  CAS  Google Scholar 

  21. Sarma SD, Adam S, Hwang EH, Rossi E (2010) Electronic transport in two dimensional graphene. Rev Mod Phys 83:407

    Article  Google Scholar 

  22. Mucciolo ER, Lewenkopf CH (2010) Disorder and electronic transport in graphene. J Phys Condens Matter 22:273201

    Article  CAS  Google Scholar 

  23. Bolotin KI, Sikes KJ, Hone J, Stormer HL, Kim P (2008) Temperature-dependent transport in suspended graphene. Phys Rev Lett 101:096802

    Article  CAS  Google Scholar 

  24. Du X, Skachko I, Barker A, Andrei EY (2008) Approaching ballistic transport in suspended graphene. Nat Nano 3:491

    Article  CAS  Google Scholar 

  25. Blake P, Brimicombe PD, Nair RR, Booth TJ, Jiang D, Schedin F, Ponomarenko LA, Morozov SV, Gleeson HF, Hill EW, Geim AK, Novoselov KS (2008) Graphene-based liquid crystal device. Nano Lett 8:1704

    Article  Google Scholar 

  26. Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3:563

    Article  CAS  Google Scholar 

  27. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen SBT, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558

    Article  CAS  Google Scholar 

  28. May JW (1969) Platinum surface LEED rings. Surf Sci 17:267

    Article  CAS  Google Scholar 

  29. Shelton JC, Patil HR, Blakely JM (1974) Equilibrium segregation of carbon to a nickel (111) surface: a surface phase transition. Surf Sci 43:493

    Article  CAS  Google Scholar 

  30. Eizenberg M, Blakely JM (1979) Carbon monolayer phase condensation on Ni (111). Surf Sci 82:228

    Article  CAS  Google Scholar 

  31. Somani PR, Somani SP, Umeno M (2006) Planer nano-graphenes from camphor by CVD. Chem Phys Lett 430:56

    Article  CAS  Google Scholar 

  32. Hummers WOR (1958) Preparation of graphite oxide. J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  33. Li D, Muller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101

    Article  CAS  Google Scholar 

  34. Cai WW, Piner RD, Stademann FJ, Park S, Shaibat MA, Ishii Y (2008) Synthesis and solid-state NMR structural characterization of 13C labeled graphite oxide. Science 321:1815

    Article  CAS  Google Scholar 

  35. Gao W, Alemany LB, Ci L, Ajayan PM (2009) New insights into the structure and reduction of graphite oxide. Nat Chem 1:403

    Article  CAS  Google Scholar 

  36. Sluiter MHF, Kawazoe Y (2003) Cluster expansion method for adsorption: application to hydrogen chemisorption on graphene. Phys Rev B 68:085410

    Article  Google Scholar 

  37. Sofo JO, Chaudhari AS, Barber GD (2007) Graphene: a two-dimensional hydrocarbon. Phys Rev B 75:153401

    Article  Google Scholar 

  38. Fujita M, Igami M, Nakada K (1997) Lattice distortion in nanographite ribbons. J Phys Soc Jpn 66:1864

    Article  CAS  Google Scholar 

  39. Han MY, Özyilmaz B, Zhang Y, Kim P (2007) Energy band-gap engineering of graphene nanoribbons. Phys Rev Lett 98:206805

    Article  Google Scholar 

  40. Chen Z, Lin YM, Rooks MJ, Avouris P (2007) Graphene nano-ribbon electronics. Phys E 40:228

    Article  CAS  Google Scholar 

  41. Utracki LA (2004) Clay containing polymeric nanocomposites. Rapra Technology, Shropshire

    Google Scholar 

  42. Wang Y, Liu J, Wang K, Chen T, Tan X, Li CM (2011) Hydrogen storage in NieB nanoalloy-doped 2D graphene. Int J Hydrogen Energy 36:12950–12954

    Article  CAS  Google Scholar 

  43. Khunova V, Kristóf J, Kelnar I, Dybal J (2013) The effect of halloysite modification combined with in situ matrix modifications on the structure and properties of polypropylene/halloysite nanocomposites. eXPRESS Polym Lett 7(5):471–479

    Article  CAS  Google Scholar 

  44. Payne AR, Whittaker RE (1971) Low strain dynamic properties of filled rubbers. Rubber Chem Technol 44:440–478

    Article  CAS  Google Scholar 

  45. Heinrich G, Kluppel M, Vilgis T (2002) Reinforcement of elastomers. Curr Opin Solid State Mater Sci 6:195–203

    Article  CAS  Google Scholar 

  46. Kluppel M (2003) The role of disorder in filler reinforcement of elastomers on various length scales. Adv Polym Sci 164:1–86

    Article  Google Scholar 

  47. Sternstein SS, Zhu AJ (2002) Reinforcement mechanism of nanofilled polymer melts as elucidated by nonlinear viscoelastic behavior. Macromolecules 35:7262–7273

    Article  CAS  Google Scholar 

  48. Payne AR (1965) In: Kraus G (ed) Reinforcement of elastomers, Chap 3. Wiley Interscience, New York

    Google Scholar 

  49. Kraus G, Childers CW, Rollmann KW (1966) Stress softening in carbon black-reinforced vulcanizates. Strain rate and temperature effects. J Appl Polym Sci 10:229–244

    Article  CAS  Google Scholar 

  50. Kraus G (1963) Swelling of filler-reinforced vulcanizates. J Appl Polym Sci 7:861–871

    Article  CAS  Google Scholar 

  51. Huber G, Vilgis TA, Heinrich G (1996) Universal properties in the dynamical deformation of filled rubbers. J Phys Condens Matter 8:L409–L412

    Article  CAS  Google Scholar 

  52. Aranguren MI, Mora E, Macosko CW, Saam J (1994) Rheological and mechanical properties of filled rubber: silica-silicone. Rubber Chem Technol 67:820

    Article  CAS  Google Scholar 

  53. Aranguren MI, Mora E, DeGroot JV, Macosko CW (1992) Effect of reinforcing fillers on the rheology of polymer melts. J Rheol 36(6):1165

    Article  CAS  Google Scholar 

  54. Wang MJ (1998) Effect of polymer-filler and filler-filler interactions on dynamic properties of filled vulcanizates. Rubber Chem Technol 71:520

    Article  CAS  Google Scholar 

  55. Meera AP, Said S, Grohens Y, Thomas S (2009) Nonlinear viscoelastic behavior of silica-filled natural rubber nanocomposites. J Phys Chem C 113:17997

    Article  CAS  Google Scholar 

  56. Wan T, Clifford MJ, Gao F, Bailey AS, Gregory DH, Somsunan R (2005) Strain amplitude response and the microstructure of PA/clay nanocomposites. Polymer 46:6429–6436

    Article  CAS  Google Scholar 

  57. Aubry T, Razafinimaro T, Médéric P (2005) Rheological investigation of the melt state elastic and yield properties of a polyamide-12 layered silicate nanocomposite. J Rheol 49:425–440

    Article  CAS  Google Scholar 

  58. Devendra R, Hatzkiriakos SG, Vogel R (2006) Rheology of metallocene polyethylene-based nanocomposites: influence of graft modification. J Rheol 50:415–434

    Article  CAS  Google Scholar 

  59. Lertwimolnun W, Vergnes B, Ausias G, Carreau PJ (2007) Stress overshoots of organoclay nanocomposites in transient shear flow. J Nonnewton Fluid Mech 141:167–169

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kishor Kumar Sadasivuni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sadasivuni, K.K., Grohens, Y. (2014). Nonlinear Viscoelasticity of Two Dimensional Filler Reinforced Rubber Nanocomposites. In: Ponnamma, D., Thomas, S. (eds) Non-Linear Viscoelasticity of Rubber Composites and Nanocomposites. Advances in Polymer Science, vol 264. Springer, Cham. https://doi.org/10.1007/978-3-319-08702-3_3

Download citation

Publish with us

Policies and ethics