Skip to main content

Realization of Sinusoidal Oscillators Using CCs

  • Chapter
  • First Online:
Current Conveyors

Abstract

Single capacitance/resistance controlled sinusoidal oscillators using CCs have been discussed which include both single CC-based as well as two or more CC-based oscillators including quadrature and multiphase oscillators. Also included are fully-uncoupled oscillators and oscillators employing all grounded passive elements as well as those providing explicit current output.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Apart from a single CC, this circuit, however, also incorporates an OTA.

References

  1. Nandi R (1977) Wien bridge oscillators using current conveyors. Proc IEEE 65:1608–1609

    Article  Google Scholar 

  2. Nandi R (1977) New RC oscillators using current conveyors. Int J Electron 42:309–311

    Article  Google Scholar 

  3. Soliman AM (1978) A novel variable frequency sinusoidal oscillator using a single current conveyor. Proc IEEE 66:800

    Article  Google Scholar 

  4. Soliman AM (1978) Realization of frequency dependent negative resistance circuits using two capacitors and a single current conveyor. Proc IEE 125:1336–1337

    Google Scholar 

  5. Senani R (1979) New canonic single-resistance controlled sinusoidal oscillator using a single current conveyor. Electron Lett 15:568–569

    Article  Google Scholar 

  6. Jana PB, Nandi R (1984) Single current conveyor tunable sinewave RC oscillator. Electron Lett 20:44–45

    Article  Google Scholar 

  7. Chong CP, Smith KC (1987) Sinusoidal oscillators employing current conveyors. Int J Electron 62:515–520

    Article  Google Scholar 

  8. Abuelma’atti MT, Humood NA (1987) Two new minimum-component Wien-Bridge oscillators using current-conveyor. Int J Electron 63:669–672

    Article  Google Scholar 

  9. Abuelma’atti MT, Humood NA (1987) Current-conveyor RC oscillator. Electron Wireless World 93:1618

    Google Scholar 

  10. Abuelma’atti MT, Humood NA (1988) Current-conveyor sine-wave oscillators. Electron Wireless World 94:282–284

    Google Scholar 

  11. Chen JJ, Chen CC, Tsao AW, Liu SI (1991) Current-mode oscillators using single current follower. Electron Lett 27:2056–2059

    Article  Google Scholar 

  12. Svoboda JA, McGory L, Webb S (1991) Applications of a commercially available current conveyor. Int J Electron 70:159–164

    Article  Google Scholar 

  13. Abuelma’atti MT (1992) Minimal realization for single resistor controlled sinusoidal oscillator using single CCII. Electron Lett 28:1264–1265

    Article  Google Scholar 

  14. Senani R, Singh VK (1992) Single-element controlled sinusoidal oscillator employing single current conveyor IC. Electron Lett 28:414–415; Errata Electron Lett 28: 895

    Article  Google Scholar 

  15. Abuelma’atti MT (1992) Grounded capacitor current-mode oscillator using single current follower. IEEE Trans Circ Syst-I 39:1018–1020

    Article  Google Scholar 

  16. Celma S, Martinez PA, Carlosena A (1992) Minimal realization for single resistor controlled sinusoidal oscillator using single CCII. Electron Lett 28:443–444

    Article  Google Scholar 

  17. Chang CM (1994) Novel current-conveyor-based single-resistance controlled/voltage-controlled oscillator employing grounded resistors and capacitors. Electron Lett 30:181–183

    Article  Google Scholar 

  18. Bhaskar DR, Senani R (1993) New current-conveyor-based single-resistance-controlled/voltage controlled oscillator employing grounded capacitors. Electron Lett 29:612–614

    Article  Google Scholar 

  19. Abuelma’atti MT (1993) New current-controlled CCII based RC oscillators with grounded capacitors and resistors. Int J Circ Theor Appl 21:487–491

    Article  MATH  Google Scholar 

  20. Celma S, Martinez PA, Carlosena A (1994) Approach to the synthesis of canonic RC-active oscillators using CCII. IEE Circ Devices Syst 141:493–497

    Article  Google Scholar 

  21. Hou CL, Shen B (1995) Second–generation current conveyor-based multiphase sinusoidal oscillators. Int J Electron 78:317–325

    Article  Google Scholar 

  22. Liu SI (1995) Single-resistance controlled/voltage controlled oscillator using current conveyors and grounded capacitors. Electron Lett 31:337–338

    Article  Google Scholar 

  23. Vosper JV, Heima M (1996) Comparison of single-and dual element frequency control in a CCII-based sinusoidal oscillator. Electron Lett 32:2293–2294

    Article  Google Scholar 

  24. Martinez PA, Celma S, Gutierrez I (1995) Wien-type oscillators using CCII+. Analog Integr Circ Sig Process 7:139–147

    Article  Google Scholar 

  25. Abuelma’atti MT, Al-Ali AK, Ahsan M (1995) Programmable current-conveyor-based oscillator employing grounded resistors and capacitors. Active Passive Electron Comp 18:259–265

    Article  Google Scholar 

  26. Abuelma’atti MT, Al-Ghumaiz AA, Khan MH (1995) Novel CCII-based single-element controlled oscillator employing grounded resistors and capacitors. In J Electron 78:1107–1112

    Article  Google Scholar 

  27. Wu DS, Liu SI, Hwang YS, Wu YP (1995) Multiphase sinusoidal oscillator using second generation current conveyors. Int J Electron 78:645–651

    Article  Google Scholar 

  28. Abuelma’atti MT, Al-Ghumaiz AA (1996) Novel CCI-based single-element-controlled oscillators employing grounded resistors and capacitors. IEEE Trans Circ Syst-I 43:153–155

    Article  Google Scholar 

  29. Vrba K, Cajka J, Zeman V (1997) New RC-active networks using current conveyors. Radioengineering 6:18–21

    Google Scholar 

  30. Abuelma’atti MT, Khan MH (1997) New sinusoidal oscillator employing the CCII internal pole. Int J Electron 83:817–823

    Article  Google Scholar 

  31. Horng JW, Chang CW, Lee MH (1997) Single-element controlled sinusoidal oscillators using CCIIs. Int J Electron 83:831–836

    Article  Google Scholar 

  32. Soliman AM (1998) Current mode CCII oscillators using grounded capacitors and resistors. Int J Circ Theor Appl 26:431–438

    Article  MATH  Google Scholar 

  33. Abuelma’atti MT, Al-Qahtani MA (1998) A grounded-resistor current conveyor-based active-R multiphase sinusoidal oscillator. Analog Integr Circ Sig Process 16:29–34

    Article  Google Scholar 

  34. Abuelma’atti MT, Al-Qahtani M (1998) Low component count second-generation current conveyor-based multiphase sinusoidal oscillators. Int J Electron 84:45–52

    Article  Google Scholar 

  35. Martinez PA, Sabadell J, Aldea C, Celma S (1999) Variable frequency sinusoidal oscillators based on CCII+. IEEE Trans Circ Syst-I 46:1386–1390

    Article  Google Scholar 

  36. Soliman AM, Elwakil AS (1999) Wien oscillators using current conveyors. Comput Electr Eng 25:45–55

    Article  Google Scholar 

  37. Soliman AM (1999) Synthesis of grounded capacitor and grounded resistor oscillators. J Franklin Inst 336:735–746

    Article  MATH  Google Scholar 

  38. Senani R, Gupta SS (2000) Novel SRCOs using first generation current conveyor. Int J Electron 87:1187–1192

    Article  Google Scholar 

  39. Papazoglou CA, Karybakas CA (2000) An electronically tunable sinusoidal oscillator suitable for high frequencies operation based on single dual-output variable-gain CCII. Analog Integr Circ Sig Process 23:31–44

    Article  Google Scholar 

  40. Abuelma’atti MT (2000) New sinusoidal oscillators with fully uncoupled control of oscillation frequency and condition using three CCII+ s. Analog Integr Circ Sig Process 24:253–261

    Article  Google Scholar 

  41. Horng JW (2001) A sinusoidal oscillator using current-controlled current conveyors. Int J Electron 88:659–664

    Article  Google Scholar 

  42. Bhaskar DR, Prasad D, Imam SA (2004) Grounded-capacitor SRCOs realized through a simple general scheme. Frequenz 58:175–177

    Article  Google Scholar 

  43. Khan AA, Bimal S, Dey KK, Roy SS (2005) Novel RC sinusoidal oscillator using second-generation current conveyor. IEEE Instrum Meas 54:2402–2406

    Article  Google Scholar 

  44. Horng JW (2005) Current conveyor based allpass filters and quadrature oscillators employing grounded capacitors and resistors. Comput Electr Eng 31:81–92

    Article  MATH  Google Scholar 

  45. Horng JW, Hou CL, Chang CM, Chung WY, Tang HW, Wen YH (2005) Quadrature oscillators using CCIIs. Int J of Electron 92:21–31

    Article  Google Scholar 

  46. Martinez PA, Sanz BMM (2005) Generation of two integrator loop variable frequency sinusoidal oscillator. Int J Electron 92(10):619–629

    Article  Google Scholar 

  47. Fongsamut C, Anuntahirunrat K, Kumwachara K, Surakampontorn W (2006) Current-conveyor-based single-element-controlled and current-controlled sinusoidal oscillators. Int J Electron 93:467–478

    Article  Google Scholar 

  48. Khan IA, Hasan S (2006) Current mode four phase quadrature oscillator using CCIIs. J Active Passive Electron Devices 1:273–279

    Google Scholar 

  49. Minhaj N (2007) Current conveyor-based voltage-mode two-phase and four-phase quadrature oscillators. Int J Electron 94:663–669

    Article  Google Scholar 

  50. Kumar A, Vyas AL (2007) A single resistance controlled eight possible oscillator circuits for analog signal processing applications. Acad Open Internet J 21:1–8, ISSN 1311–4360

    MATH  Google Scholar 

  51. Kumar V, Pal K (2009) Single element controlled sinusoidal oscillators using current conveyors. J Active Passive Electron Devices 8:197–202

    Google Scholar 

  52. Skotis GD, Psychalinos C (2010) Multiphase sinusoidal oscillators using second generation current conveyors. Int J Electron Commun 64:1178–1181

    Article  Google Scholar 

  53. Abdalla KK, Bhaskar DR, Senani R (2010) Configuration for realizing a current-mode universal filter and dual-mode quadrature single resistor controlled oscillator. IET Circ Devices Syst 6:159–167

    Article  Google Scholar 

  54. Lahiri A (2011) New canonic active RC sinusoidal oscillator circuits using second-generation current conveyors with application as a wide-frequency digitally controlled sinusoid generator. Active Passive Electron Comp 2011, 274394, 8p

    Article  Google Scholar 

  55. Lahiri A (2012) Current-mode variable frequency quadrature sinusoidal oscillators using two CCs and four passive components including grounded capacitors. Analog Integr Circ Sig Process 71:303–311

    Article  Google Scholar 

  56. Sotner R, Lahiri A, Kartci A, Herencsar N, Jerabek J, Vrba K (2013) Design of novel precise quadrature oscillators employing ECCIIs with electronic control. Adv Electr Comput Eng 13:65–72

    Article  Google Scholar 

  57. Abuelma’atti MT, Alsuhaibani ES, Obadi ASB, Khalifa ZJ (2013) Independent control of the frequency and condition of oscillation: a caution. Int J Electron 100:384–392

    Article  Google Scholar 

  58. Senani R, Gupta SS (1997) Synthesis of single-resistance-controlled oscillators using CFOAs: simple state-variable approach. IEE Proc Circ Devices Syst 144:104–106

    Article  Google Scholar 

  59. Gupta SS, Senani R (1998) State variable synthesis of single resistance controlled grounded capacitor oscillators using only two CFOAs. IEE Proc Circ Devices Syst 145:135–138

    Article  Google Scholar 

  60. Gupta SS, Senani R (1998) State variable synthesis of single resistance controlled grounded capacitor oscillators using only two CFOAs: additional new realizations. IEE Proc Circ Devices Syst 145:415–418

    Article  Google Scholar 

  61. Senani R, Bhaskar DR (1992) Simple configuration for realizing voltage-controlled impedances. IEEE Trans Circ Syst 39:52–59

    Article  Google Scholar 

  62. Hribsek M, Newcomb RW (1976) VCO controlled by one variable resistor. IEEE Trans Circ Syst 23:166–169

    Article  Google Scholar 

  63. Soliman AM, Awad SS (1978) A canonical voltage controlled oscillator realized using a single operational amplifier. Frequenz 32:153–154

    Google Scholar 

  64. Senani R (1979) New canonic sinusoidal oscillator with independent frequency control through a single grounded resistor. Proc IEEE 67:691–692

    Article  Google Scholar 

  65. Dutta Roy SC, Pyara VP, Jamuar S (1983) Identification and design of single amplifier single resistance controlled oscillators. IEE Trans Circ Syst 30:176–181

    Article  Google Scholar 

  66. Senani R (1994) On equivalent forms of single op-amp sinusoidal oscillators. IEEE Trans Circ Syst I41:617–624

    Article  Google Scholar 

  67. Darkani MT, Bhattacharyya BB (1984) A unified approach to the realization of RC-active, single as well as variable, frequency, oscillators using operational amplifiers. J Franklin Inst 317:413–439

    Article  Google Scholar 

  68. Kaliyugvaradan S (1981) Single resistance controlled RC-oscillator using a single operational amplifier. Int J Electron 50:153–155

    Article  Google Scholar 

  69. Singh V (2001) Realization of operational floating amplifier based 1-op-amp based sinusoidal oscillators. IEEE Trans Circ Syst 48:377–381

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Senani, R., Bhaskar, D.R., Singh, A.K. (2015). Realization of Sinusoidal Oscillators Using CCs. In: Current Conveyors. Springer, Cham. https://doi.org/10.1007/978-3-319-08684-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08684-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08683-5

  • Online ISBN: 978-3-319-08684-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics