Skip to main content

CMOS Implementations of Current Conveyors

  • Chapter
  • First Online:
Current Conveyors
  • 1647 Accesses

Abstract

In order to make CC-based circuits compatible with CMOS digital circuits, a lot of attention has been given in the literature over the past two decades to evolve CMOS-based Current Conveyors. In this chapter, we bring out some of the important developments in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sedra AS, Roberts GW, Gohh F (1990) The current conveyor: history, progress and new results. IEE Proc Circ Devices Syst 137:78–87

    Article  Google Scholar 

  2. Liu SI, Tsao HW, Wu J, Lin TK (1990) MOSFET capacitor filters using unity gain CMOS current conveyors. Electron Lett 26:1430–1431

    Article  Google Scholar 

  3. Liu SI, Tsao HW, Wu J (1991) CCII-based continuous-time filters with reduced gain-bandwidth sensitivity. IEE Proc Circ Devices Syst 138:210–216

    Article  Google Scholar 

  4. Chen JJ, Chen CC, Tsao HW, Liu SI (1991) Circuit-mode oscillators using single current follower. Electron Lett 27:2056–2059

    Article  Google Scholar 

  5. Surakampontorn W, Riewruja V, Cheevasuvit F (1991) Integrable CMOS-base realization of current conveyors. Int J Electron 71:793–798

    Article  Google Scholar 

  6. Surakampontorn W, Kumwachara K (1992) CMOS-based electronically tunable current conveyor. Electron Lett 28:1316–1317

    Article  Google Scholar 

  7. Laopoulos TH, Siskos S, Bafleur M, Givelin PH (1992) CMOS current conveyor. Electron Lett 28:2261–2262

    Article  Google Scholar 

  8. Bruun E (1993) CMOS high speed, high precision current conveyor and current feedback amplifier structures. Int J Electron 74:93–100

    Article  Google Scholar 

  9. Cheng MCH, Toumazou C (1993) 3 V MOS current conveyor cell for VLSI technology. Electron Lett 29:317–318

    Article  Google Scholar 

  10. Brunn E (1995) Class AB CMOS first –generation current conveyor. Electron Lett 31:422–423

    Article  Google Scholar 

  11. Bruun E (1995) A combined first-and second-generation current conveyor structure. Int J Electron 78:911–923

    Article  Google Scholar 

  12. Piovaccari A (1995) CMOS integrated third-generation current conveyor. Electron Lett 31:1228–1229

    Article  Google Scholar 

  13. Cha HW, Watanabe K (1996) Wideband CMOS current conveyor. Electron Lett 32:1245–1246

    Article  Google Scholar 

  14. Oliaei O, Loumeau P (1996) Current-mode class AB design using floating voltage-source. Electron Lett 32:1526–1528

    Article  Google Scholar 

  15. Bruun E (1996) Analysis of the noise properties for CMOS current conveyors. Analog Integr Circ Sig Process 12:71–78

    Article  Google Scholar 

  16. Hassan O, Elwan HO, Soliman AM (1996) A novel CMOS current conveyor realization with an electronically tunable current mode filter suitable for VLSI. IEEE Trans Circ Syst-II 43:663–670

    Article  Google Scholar 

  17. Oliaei O, Porte J (1997) Compound current conveyor (CCII+ and CCII−. Electron Lett 33:253–254

    Article  Google Scholar 

  18. Elwan HO, Soliman AM (1997) Low-voltage low-power CMOS current conveyors. IEEE Trans Circ Syst-I 44:828–835

    Article  Google Scholar 

  19. Arbel A (1997) Towards a perfect CMOC CCII. Analog Integr Circ Sig Process 12:119–132

    Article  Google Scholar 

  20. Cha HW, Ogawa S, Watanabe K (1998) Class A CMOS current conveyors. IEICE Trans Fundament E81-A:1164–1167

    Google Scholar 

  21. Tarim N, Yenen B, Kuntman H (1998) Simple and accurate non-linear current conveyor macromodel suitable for simulation of active filters using CCIIs. Int J Circ Theor Appl 26:27–38

    Article  Google Scholar 

  22. Ismail AM, Soliman AM (1998) Wideband CMOS current conveyor. Electron Lett 34:2368–2369

    Article  Google Scholar 

  23. Awad IA, Soliman AM (1999) New CMOS realization of the CCII-. IEEE Trans Circ Syst-II 46:460–463

    Article  Google Scholar 

  24. Fabre A, Amrani H, Barthelemy H (1999) A novel class AB first generation current conveyor. IEEE Trans Circ Syst-II 46:96–98

    Article  Google Scholar 

  25. Premont C, Abouchi N, Grisel R, Chante JP (1999) A BiCMOS current conveyor based four—quadrant analog multiplier. Analog Integr Circ Sig Process 19:159–162

    Article  Google Scholar 

  26. Palmisano G, Palumbo G, Pennisi S (1999) Design strategies for class A CMOS CCIIs. Analog Integr Circ Sig Process 19:75–85

    Article  Google Scholar 

  27. Ismail AM, Soliman AM (2000) Low-power CMOS current conveyors. Electron Lett 36:7–8

    Article  Google Scholar 

  28. Yodprasit U (2000) High-precision CMOS current conveyor. Electron Lett 36:609–610

    Article  Google Scholar 

  29. Palumbo G, Pennisi S (2001) A high-performance CMOS CCII. Int J Circ Theor Appl 29:331–336

    Article  MATH  Google Scholar 

  30. Emami S, Wada K, Takagi S, Fujii N (2001) A novel design strategy for class A CMOS second generation current conveyors. IEICE Trans Fundament 84-A:552–558

    Google Scholar 

  31. Ferri G, Laurentiis PD, Stochino G (2001) Current conveyors II. Analogue design. Electron World 300–302

    Google Scholar 

  32. Kurashina T, Ogawa S, Watanabe K (2002) A CMOS rail-to-rail current conveyor. IEICE Trans Fundament 85-A:2894–2900

    Google Scholar 

  33. Nero AL, Aguiar Ruil L, Santos DM (2002) Bandwidth aspects in second generation current conveyors. Analog Integr Circ Sig Process 33:127–136

    Article  Google Scholar 

  34. Cicekoglu O, Tarim N, Kuntman H (2002) Wide dynamic range high output impedance current-mode multifunction filters with dual-output current conveyors. Int J Electron Commun (AEU) 56:55–60

    Article  Google Scholar 

  35. El-Adawy AA, Soliman AM, Elwan HO (2002) Low voltage digitally controlled CMOS current conveyor. Int J Electron Commun (AEU) 56:137–144

    Article  Google Scholar 

  36. Calvo B, Celma S, Martinez PA, Sanz MT (2003) Novel high performance CMOS current conveyor. Microelectron Reliabil 43:955–961

    Article  Google Scholar 

  37. Kurashina T, Ogawa S, Watanabe K (2003) A CMOS rail-to-rail current conveyor and its applications to current-mode filters. IEICE Trans Fundament E86-A(6):1445–1450

    Google Scholar 

  38. Mita R, Palumbo G, Pennisi S (2003) 1.5-V CMOS CCII+ with high current-driving capability. IEEE Trans Circ Syst-II 50:187–190

    Article  Google Scholar 

  39. Awad IA, Soliman AM (2004) High accuracy class AB CCII-. Int J Electron Commun (AEU) 58:237–243

    Article  Google Scholar 

  40. Rajput SS, Jamuar SS (2004) Low voltage, low power and high performance current conveyors for low-voltage analog and mixed mode signal processing applications. Analog Integr Circ Sig Process 41:21–34

    Article  Google Scholar 

  41. Hassanein WS, Awad IA, Soliman AM (2004) New wide band low power CMOS current conveyors. Analog Integr Circ Sign Process 40:91–97

    Article  Google Scholar 

  42. Ferri G, Guerrini NC (2004) Noise determination of differential pair-based second generation current conveyors. Analog Integr Circ Sig Process 41:35–46

    Article  Google Scholar 

  43. Calvo B, Celma S, Martinez PA, Sanz MT (2003) High-speed high-precision CMOS current conveyor. Analog Integr Circ Sig Process 36:235–238

    Article  Google Scholar 

  44. Hassanein WS, Awad IA, Soliman AM (2005) New high accuracy CMOS current conveyors. Int J Electron Commun 59:384–391

    Article  Google Scholar 

  45. Hassanein WS, Awad IA, Soliman AM (2005) Long tail pair based positive CMOS current conveyors: a review. Frequenz 59:186–194

    Article  Google Scholar 

  46. Salem SB, Fakhfakh M, Masmoudi DS, Loulou M, Loumeau P, Masmoudi N (2006) A high performance CMOS CCII and high frequency applications. Analog Integ Circ Sig Process 49:71–78

    Article  Google Scholar 

  47. Hassan HM, Soliman AM (2006) Novel accurate wideband CMOS current conveyor. Frequenz 60:234–236

    Article  Google Scholar 

  48. Madian AH, Mahmoud SA, Soliman AM (2006) New 1.5-V CMOS second generation current conveyor based on wide range transconductor. Analog Integr Circ Sig Process 49:267–279

    Article  Google Scholar 

  49. Minaei S, Sayin OK, Kuntaman H (2006) A new CMOS electronically tunable current conveyor and its application to current-mode filters. IEEE Trans Circ Syst-I 53:1448–1457

    Article  Google Scholar 

  50. Ferri G, Stornelli V, Fragnoli M (2006) An integrated improved CCII topology for resistive sensor application. Analog Integr Circ Sig Process 48:247–250

    Article  Google Scholar 

  51. Barthelemy H, Fillaud M, Bourdel S, Gaubert J (2007) CMOS inverters based positive type second generation current conveyor. Analog Integr Circ Sig Process 50:141–146

    Article  Google Scholar 

  52. Kasemsuwan V, Nakhlo W (2007) A simple 1.5 V rail-to-rail CMOS current conveyor. J Circ Syst Comput 16:627–639

    Article  Google Scholar 

  53. Arcamone J, Misischi B, Graells FS, Boogaart MAFVD, Brugger J, Torres F, Abadal G, Barniol N, Murano FP (2008) Compact CMOS current conveyor for integrated NEMS resonators. IET Circ Devices Syst 2:317–323

    Article  Google Scholar 

  54. Motlak HJ, Ahmed SN (2008) CMOS CCII-based on modified dual output-OTA for high frequency applications. Int J Electron 95:879–889

    Article  Google Scholar 

  55. Al-Absi MA (2009) A novel highly accurate current mirror. Int J Electron 96:781–786

    Article  Google Scholar 

  56. Thankachan S, Pattanaik M, Rajput SS (2009) A ± 0.5 V BiCMOS class-A current conveyor. Int J Electr Electron Eng 3:607–610

    Google Scholar 

  57. Mahmoodi A, Abrishamifar A (2010) A novel current conveyor with high functionality and optimized ports. IEICE Electron Express 7:1480–1485

    Article  Google Scholar 

  58. Chatterjee A, Fakhfakh M, Siarry P (2010) Design of second-generation current conveyor employing bacterial foraging optimization. Microelectron J 41:616–626

    Article  Google Scholar 

  59. Motlak HJ, Ahmed SN (2010) Wide bandwidth CMOS CCII+ using resistive-compensation technique. J Active Passive Electron Devices 5:163–180

    Google Scholar 

  60. Khateb F, Khatib N, Kubanek D (2011) Novel low-voltage low-power high-precision CC± based on bulk-driven folded cascode OTA. Microelectron J 42:622–631

    Article  Google Scholar 

  61. Kapur G, Mittal S, Markan CM, Pyara VP (2012) Design of analog field programmable cmos current conveyor. Sci J Circ Syst Sig Process 1:9–21

    Google Scholar 

  62. Ahmadpoor N, Mohamadzade S, Ahmadzadeh M (2012) A novel linear low voltage rail to rail second generation current conveyor for RF applications. J Basic Sci Res 2:12306–12310

    Google Scholar 

  63. Arslan E, Minaei S, Morgul A (2013) On the realization of high performance current conveyors and their applications. J Circ Syst Comput 22:23 pages

    Google Scholar 

  64. Hwang YS, Ku YT, Chen JJ, Wang SF (2013) A low-voltage current conveyor using inverter-based error amplifier and its oscillator application. IEICE Electron Express 10:1–7

    Article  Google Scholar 

  65. Alzaher H, Tasadduq N, Al-Ees O, Al-Ammari (2013) A complementary metal-oxide semiconductor digitally programmable current conveyor. Int J Circ Theor Appl 41:69–81

    Google Scholar 

  66. Hwang YS, Ku YT, Chen JJ, Yu CC (2013) Inverter-based low-voltage CCII-design and its filter application. Radioengineering 22:1026–1033

    Google Scholar 

  67. Palumbo G (1999) 1.2 V CMOS output stage with improved drive capability. Electron Lett 35:358–359

    Article  Google Scholar 

  68. Ferri G, Guerrini NC (2003) Low-voltage low-power CMOS current conveyors. Kluwer, Dordrecht

    Google Scholar 

  69. Manhas PS, Pal K, Sharma S, Mangotra LK, Jamwal KKS (2009) New low-voltage class AB current conveyor II for analog applications. Ind J Pure Appl Phys 47:306–309

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Senani, R., Bhaskar, D.R., Singh, A.K. (2015). CMOS Implementations of Current Conveyors. In: Current Conveyors. Springer, Cham. https://doi.org/10.1007/978-3-319-08684-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08684-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08683-5

  • Online ISBN: 978-3-319-08684-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics