Skip to main content

Integratable Bipolar CC Architectures and Commercially Available IC CCs

  • Chapter
  • First Online:
Current Conveyors
  • 1552 Accesses

Abstract

Bipolar implementations of CCs based upon input stages consisting of translinear circuits as well as those having differential pair based input stages have been discussed. Circuit techniques for achieving temperature-compensated designs, x-port parasitic resistance reduction, increasing the input resistance at port-Y and obtaining current-controllable gains have also been elaborated. Together with these, the details of a number of commercially available IC CCs such as CCII01, PA 630, AD 844 or other IC building blocks which can also be used as CCs (such as OPA 2662, OPA 660/860, have also been provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fabre A (1985) Translinear current conveyors implementation. Int J Electron 59:619–623

    Article  Google Scholar 

  2. Normand G (1985) Translinear current conveyors. Int J Electron 59(6):771–777

    Article  Google Scholar 

  3. Wilson B (1981) Low-distortion feedback voltage-to-current conversion technique. Electron Lett 17:157–158

    Article  Google Scholar 

  4. Pookaiyaudom S, Kuhanont T (1977) High performance differential quartets. Proc Inst Elect Electron Engrs 65:1721–1723

    Article  Google Scholar 

  5. Barthelemy H (1997) Low-output-impedance class AB bipolar voltage buffer. Electron Lett 33:1662–1664

    Article  Google Scholar 

  6. Higashimura M, Fukui Y (1988) Type I mutator using current conveyor and its application to immittance simulation. Int J Electron 64:377–383

    Article  Google Scholar 

  7. Wadsworth DC (1989) Professional audio current conveyor IC. Phototronics Co, Manotick

    Google Scholar 

  8. Surakampontorn W, Thitimajshima P (1988) Integrable electronically tunable current conveyors. IEE Proc 135:71–77

    Google Scholar 

  9. Filanovsky IM (1997) Current source is modified into a current conveyor. Circuits Devices 29

    Google Scholar 

  10. Surakampontorn W, Riewruja V, Kumwachara K, Fongsamut C (1998) Temperature compensation of translinear current conveyor and OTA. Electron Lett 34:707–709

    Article  Google Scholar 

  11. Seguin F, Fabre A (2001) New second generation current conveyor with reduced parasitic resistance and band pass filter application. IEEE Trans Circ Syst-I 48:781–785

    Article  Google Scholar 

  12. Alami M, Fabre A, Bouhdada A (1999) Second generation current conveyors with enhanced input resistance. Int J Electron 86:405–412

    Article  Google Scholar 

  13. Fabre A, Mimeche N (1994) Class A/AB second-generation current conveyor with controlled current gain. Electron Lett 30:1267–1269

    Article  Google Scholar 

  14. Fabre A, Amrani H, Barthelemy H (1999) A novel class AB first generation current conveyors. IEEE Trans Circ Syst-II 46:96–98

    Article  Google Scholar 

  15. Fabre A, Siarry P, Lameche M (1991) Current-controlled translinear impedance converter. Int J Electron 70:795–801

    Article  Google Scholar 

  16. Fabre A (1984) Wideband translinear current convertor. Electron Lett 20:241–242

    Article  Google Scholar 

  17. Hickman I (1994) Current Conveyor ICs –a new building block. Electronics World + Wireless World 402–405

    Google Scholar 

  18. Wadsworth DC (1989) Accurate current conveyor integrated circuit. Electron Lett 25:1251–1253

    Article  Google Scholar 

  19. Wadsworth DC (1990) Accurate current conveyor topology and monolithic implementation. IEE Proc 137:88–94

    Google Scholar 

  20. Devices A (1989) Linear products data book. Analog Devices Inc., Norwood

    Google Scholar 

  21. OPA 2662 (1991) Dual, wide bandwidth operational transconductance amplifier. Burr-Brown Corporation, Tucson, AZ 85734

    Google Scholar 

  22. Tomawski L, Gabrek R, Ole’s S (2001) Inverting current conveyor from an OPA 1662: Electron World and Wireless World: Circuits Ideas. 792

    Google Scholar 

  23. OPA 660/OPA 860 (1990) Wide bandwidth operational transconductance amplifier and buffer. Burr-Brown Corporation

    Google Scholar 

  24. Henn C (1993) New ultra high-speed circuit techniques with analog ICs. Corporation, Burr-Brown, Tucson, AZ 85734

    Google Scholar 

  25. de Jager W, Smit J (1977) Application, design and symbolic analysis of a current follower. Electron Circ Syst 1:79–84

    Article  Google Scholar 

  26. Jager W de, Smit J (1978) Design and symbolic analysis of current mode analog circuits. Technische Hogeschool Twente, Afdeling Der Elektrotechniek 4p

    Google Scholar 

  27. Hayashi Y, Goto N, Suzuki T (1984) Equivalent circuit of a gyrator using current conveyor II (CCII) and its active compensation. Trans IECE J 167:25–32

    Google Scholar 

  28. Goto N, Nishio M, Suzuki T (1986) A current conveyor II realized by mosfets and its application to switched capacitor filters. Electron Commun in Japan (Pt II: Electronics) 69:10–17

    Article  Google Scholar 

  29. Wilson B (1986) Using current conveyors. Electron World and Wireless World 28–32

    Google Scholar 

  30. Wilson B (1990) Recent developments on current conveyors and current-mode circuits. IEE Proc Pt G Circ Devices Syst 137:63–77

    Article  Google Scholar 

  31. Toumazou C, Lidgey FJ, Makris CA (1990) Extending voltage-mode op-amps to current-mode performance. IEE Proc 137:116–130

    Google Scholar 

  32. Lidgey J, Toumazou C (1990) Current amplifiers from voltage op-amps. Design: Electron World + Wireless World 568–573

    Google Scholar 

  33. Svoboda JA, McGory L, Webb S (1991) Applications of a commercially available current conveyor. Int J Electron 70:159–164

    Article  Google Scholar 

  34. Fabre A, Saaid O (1993) Novel translinear impedance convertor and band pass filter applications. Electron Lett 29:746–747

    Article  Google Scholar 

  35. Duncan RA, Chan KM, Sedra AS (1994) Design for a wideband current amplifier and a current conveyor. IEEE Trans Circ Syst-I 41:272–280

    Article  Google Scholar 

  36. Matsumoto F, Miyake A, Noguchi Y (2000) A high-precision low-voltage bipolar current mirror circuit and its compensation for stability. Int J Electron 87:71–78

    Article  Google Scholar 

  37. Robinson J (2008) New CCII current conveyor. Maxim Integr Appl Note 4198:1–6

    Google Scholar 

  38. Merz N, Kiranon W, Wongtachathum C, Pawarangkoon P, Narksarp W (2012) A modified bipolar translinear cell with improved linear range and its applications. Radioengineering 21:736–745

    Google Scholar 

  39. Abuelma’atti MT, Al-Zaher HA (1997) Nonlinear performance of the mixed translinear loop. Int J Electron 83:467–471

    Article  Google Scholar 

  40. Matsumoto K, Horita M, Yamamoto G (1981) Analysis of a gyrator and a CR oscillator using current conveyor. Trans IECE Japan 12:891–892

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Senani, R., Bhaskar, D.R., Singh, A.K. (2015). Integratable Bipolar CC Architectures and Commercially Available IC CCs. In: Current Conveyors. Springer, Cham. https://doi.org/10.1007/978-3-319-08684-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08684-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08683-5

  • Online ISBN: 978-3-319-08684-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics