Skip to main content

Analog Filter Design Revisited: Circuit Configurations Using Newer Varieties of CCs

  • Chapter
  • First Online:
  • 1567 Accesses

Abstract

This chapter presents some selected universal biquad filter realizations in Voltage-mode, Current- mode and mixed–mode, using a variety of new types of CCs reported in the technical literature during the past two decades or more. In each category, we have chosen only a few representative configurations which, in our opinion, exhibit features superior to the other available alternatives.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hassan TM, Mahmoud SA (2010) New CMOS DVCC realization and applications to instrumentation amplifier and active-RC filters. Int J Electron Commun (AEU) 64:47–55

    Google Scholar 

  2. Yuce E (2009) Voltage-mode multifunction filters employing a single DVCC and grounded capacitors. IEEE Trans Instrum Meas 58:2216–2221

    Google Scholar 

  3. Minaei S, Yuce E (2010) Novel voltage-mode all-pass filter based on using DVCCs. Circ Syst Sig Process 29:391–402

    MATH  Google Scholar 

  4. Tangsrirat W, Channumsin O (2011) Voltage-mode multifunctional biquadratic filter using single DVCC and minimum number of passive elements. Ind Pure Appl Physics 49:703–707

    Google Scholar 

  5. Horng JW, Jhao ZY (2013) Voltage-mode universal biquadratic filter using single DVCC. ISRN Electron: Article ID 125746, 5p

    Google Scholar 

  6. Chen HP, Shen SS (2007) A versatile universal capacitor-grounded voltage-mode filter using DVCCs. ETRI J 29:470–476

    Google Scholar 

  7. Tsukutani T, Sumi Y, Yabuki N (2007) Novel current-mode biquadratic circuit using only plus type DO-DVCCs and grounded passive components. Int J Electron 94:1137–1146

    Google Scholar 

  8. Horng JW (2010) DVCCs based high input impedance voltage-mode first-order all pass, high pass, and low pass filters employing grounded capacitor and resistor. Radioengineering 19:653–656

    Google Scholar 

  9. Tsukutani T, Tsunetsugu H, Sumi Y, Yabuki N (2010) Electronically tunable first-order all-pass circuit employing DVCC and OTA. Int J Electron 97:285–293

    Google Scholar 

  10. Maheshwari S, Mohan J, Chauhan DS (2010) High input impedance voltage-mode universal filter and quadrature oscillator. J Circ Syst Comput 19:1597–1607

    Google Scholar 

  11. Khateb F, Khatib N, Koton J (2011) Novel low-voltage ultra-low-power DVCC based on floating-gate folded cascode OTA. Microelectron J 42:1010–1017

    Google Scholar 

  12. Horng JW, Hsu CH, Tseng CY (2012) High input impedance voltage-mode universal biquadratic filters with three inputs using three CCs and grounding capacitors. Radioengineering 21:290–296

    Google Scholar 

  13. Chen HP (2012) Tunable versatile current-mode universal filter based on plus-type DVCCs. Int J Electron Commun (AEU) 66:332–339

    Google Scholar 

  14. Soliman AM (2009) Generation and classification of Kerwin-Huelsman-Newcomb circuits using the DVCC. Int J Circ Theor Appl 37:835–855

    MathSciNet  MATH  Google Scholar 

  15. Ibrahim MA, Minaei S, Kuntman H (2005) A 22.5 MHz current-mode KHN-biquad using differential voltage current conveyor and grounded passive elements. Int J Electron Commun (AEU) 59:311–318

    Google Scholar 

  16. Horng JW, Hou CL, Chang CM, Chou HP, Lin CT (2006) High input impedance voltage-mode universal biquadratic filter with one input and five outputs using current conveyors. Circ Syst Sig Process 25:767–777

    MathSciNet  MATH  Google Scholar 

  17. Minaei S, Ibrahim MA (2009) A mixed-mode KHN-biquad using DVCC and grounded passive elements suitable for direct cascading. Int J Circ Theor Appl 37:793–810

    MATH  Google Scholar 

  18. Horng JW (2010) Lossless inductance simulation and voltage-mode universal biquadratic filter with one input and five outputs using DVCCs. Analog Integr Circ Sig Process 62:407–413

    Google Scholar 

  19. Cajka J, Vrba K (2000) Novel universal RC-active filters using DVCC elements. J Electr Eng 51:207–208

    Google Scholar 

  20. Cajka J, Dostal T, Vrba K (2002) High-order low pass filters using DVCC elements. Radioengineering 11:14–17

    Google Scholar 

  21. Horng JW, Hou CL, Chang CM, Chung WY (2006) Voltage-mode universal biquadratic filters with one input and five outputs. Analog Integr Circ Sig Process 47:73–83

    Google Scholar 

  22. Maheshwari S (2008) Current-mode filters with high output impedance and employing only grounded components. WSEAS Trans Electron 5:238–243

    Google Scholar 

  23. Maheshwari S (2008) High performance voltage-mode multifunction filter with minimum component count. WSEAS Trans Electron 5:244–249

    Google Scholar 

  24. Mahmoud SA (2008) Low voltage wide range CMOS differential voltage current conveyor and its applications. Contemp Eng Sci 1:105–126

    Google Scholar 

  25. Maheshwari S (2009) Analogue signal processing applications using a new circuit topology. IET Circ Devices Syst 3:106–115

    MathSciNet  Google Scholar 

  26. Horng JW (2012) Voltage-mode multifunction biquadratic filters employing single DVCC. Int J Electron 99:153–162

    Google Scholar 

  27. Maheshwari S, Mohan J, Chauhan DS (2013) Novel voltage-mode cascadable all-pass sections employing grounded passive components. J Circ Syst Comput 22:1200065-1–1200065-2

    Google Scholar 

  28. Jiang J, Zhou X, Xu W (2013) Nth-order current transfer function synthesis using DVCCs: signal-flow graph approach. Int J Electron 100:482–496

    Google Scholar 

  29. Imran A, Arora D, Kumar R (2014) Dual DVCC based voltage-mode digitally programmable biquadratic filter. Circ Syst 5:1–6

    Google Scholar 

  30. Ibrahim MA, Minaei S, Kuntman H (2006) DVCC based differential-mode all-pass and notch filters with high CMRR. Int J Electron 93:231–240

    Google Scholar 

  31. Chang CM, Chen HP (2003) Universal capacitor-grounded voltage-mode filter with three inputs and a single output. Int J Electron 90:401–406

    Google Scholar 

  32. Ibrahim MA, Kuntman H, Cicekoglu O (2003) First-order all-pass filter canonical in the number of resistors and capacitors employing a single DDCC. Circ Syst Sig Process 22:525–536

    MATH  Google Scholar 

  33. Horng JW, Chiu WY, Wei HY (2004) Voltage-mode high pass, band pass and low pass filters using two DDCCs. Int J Electron 91:461–464

    Google Scholar 

  34. Ibrahim MA, Kuntman H (2004) A novel high CMRR high input impedance differential voltage-mode KHN-biquad employing DO-DDCCs. Int J Electron Commun (AEU) 58:429–433

    Google Scholar 

  35. Ibrahim MA, Kuntman H, Cicekoglu O (2005) Single DDCC biquads with high input impedance and minimum number of passive elements. Analog Integr Circ Sig Process 43:71–79

    Google Scholar 

  36. Chen HP, Wu KH (2006) Single DDCC-based voltage-mode multifunction filter. IEICE Trans Fundam E89-A:1–3

    Google Scholar 

  37. Horng JW, Hou CL, Chang CM, Lin YT, Shiu IC, Chiu WY (2006) First-order allpass filter and sinusoidal oscillators using DDCCs. Int J Electron 93:457–466

    Google Scholar 

  38. Chang CM, Soliman AM, Swamy MNS (2007) Analytical synthesis of low-sensitivity high-order voltage-mode DDCC and FDCCII-grounded R and C all-pass filter structures. IEEE Trans Circ Syst-I 54:1430–1443

    Google Scholar 

  39. Lee CL, Chang CM, Hou CL, Horng JW (2007) Multiple-mode universal biquad filter using two DDCCs. Int J Electr Eng 14:279–285

    Google Scholar 

  40. Chen HP (2007) Universal voltage-mode filter using only plus-type DDCCs. Analog Integr Circ Sig Process 50:137–139

    Google Scholar 

  41. Chiu WY, Horng JW (2007) High-input and low-output impedance voltage-mode universal biquadratic filter using DDCCs. IEEE Trans Circ Syst-II 54:649–652

    Google Scholar 

  42. Chen HP, Shen SS, Wang JP (2008) Electronically tunable versatile voltage-mode universal filter. Int J Electron Commun (AEU) 62:316–319

    Google Scholar 

  43. Lee WT, Liao YZ (2008) New voltage-mode high- pass, band-pass and low-pass filter using DDCC and OTAs. Int J Electron Commun (AEU) 62:701–704

    Google Scholar 

  44. Chen HP, Wu KH (2008) Novel voltage-mode multifunction filter using only two DDCCs. J Circ Syst Comput 17:1161–1172

    Google Scholar 

  45. Chen HP, Chu PL (2008) Versatile voltage-mode multifunction biquadratic filter employing DDCCs. IEICE Electron Express 5:769–775

    Google Scholar 

  46. Horng JW (2008) High input impedance voltage-mode universal biquadratic filter with three inputs using DDCCs. Circ Syst Sig Process 27:553–562

    MATH  Google Scholar 

  47. Chen HP (2009) Versatile universal voltage-mode filter employing DDCCs. Int J Electron Commun (AEU) 63:78–82

    Google Scholar 

  48. Yuce E (2010) A novel floating simulation topology composed of only grounded passive components. Int J Electron 97:249–262

    Google Scholar 

  49. Chen HP (2010) High-input impedance voltage-mode multifunction filter with four grounded components and only two plus-type DDCCs. Active Passiv Electron Comp 2010: Article ID 362516, 5p

    Google Scholar 

  50. Maheshwari S, Gangwar A (2011) Versatile voltage-mode universal filter using differential difference current conveyor. Circ Syst 2:210–216

    Google Scholar 

  51. Lee CN (2011) Fully cascadable mixed-mode universal filter biquad using DDCCs and grounded passive components. J Circ Syst Comput 20:607–620

    Google Scholar 

  52. Prommee P, Somdunyakanok M (2011) CMOS-based current-controlled DDCC and its applications to capacitance multiplier and universal filter. Int J Electron Commun (AEU) 65:1–8

    Google Scholar 

  53. Ibrahim MA, Minaei S, Yuce E (2011) All-pass sections with high gain opportunity. Radioengineering 20:3–9

    Google Scholar 

  54. Horng JW, Chiu WY (2011) High input impedance DDCC-based voltage-mode universal biquadratic filter with three inputs and five outputs. Ind J Pure Appl Physics 18:183–190

    Google Scholar 

  55. Liao WB, Gu JC (2011) SIMO type universal mixed-mode biquadratic filter. Ind J Pure Appl Physics 18:443–448

    Google Scholar 

  56. Chiu WY, Horng JW (2012) Voltage-mode high pass, low pass and notch biquadratic filters using single DDCC. Radioengineering 21:297–303

    Google Scholar 

  57. Chiu WY, Horng JW (2012) High input impedance voltage-mode universal biquadratic filter with three inputs and six outputs using three DDCCs. Circ Syst Sig Process 31:19–30

    MathSciNet  Google Scholar 

  58. Horng JW, Chiu TY, Jhao ZY (2012) Tunable versatile high input impedance voltage-mode universal biquadratic filter based on DDCCs. Radioengineering 21:1260–1268

    Google Scholar 

  59. Chaturvedi B, Maheshwari S (2012) An ideal voltage-mode all-pass filter and its application. J Commun Comput 9:613–623

    Google Scholar 

  60. Kumngern M, Khateb F, Dejhan K, Phasukkit P, Tungjitkusolmun S (2013) Voltage-mode multifunction biquadratic filters using new ultra-low-power differential difference current conveyors. Radioengineering 22:448–457

    Google Scholar 

  61. Hwang YS, Liu A, Wang SF, Yang SC, Chen JJ (2013) A tunable Butterworth low-pass filter with digitally controlled DDCC. Radioengineering 22:511–517

    Google Scholar 

  62. Saied AB, Salem SB, Masmoudi DS (2013) A quadrature oscillator based on a new “optimized DDCC” all-pass filter. Circ Syst 4:498–503

    Google Scholar 

  63. Stornelli V, Ferri G (2013) A 0.18 μm CMOS DDCCII for portable LV-LP filters. Radioengineering 22:434–439

    Google Scholar 

  64. Tangsrirat W, Channumsin O (2011) High-input impedance voltage-mode multifunction filter using a single DDCCTA and grounded passive elements. Radioengineering 20:905–910

    Google Scholar 

  65. Tangsrirat W, Channumsin O, Pukkalanun T (2013) Resistorless realization of electronically tunable voltage-mode SIFO-type universal filter. Microelectron J 44:210–215

    Google Scholar 

  66. Channumsin O, Pukkalanun T, Tangsrirat W (2012) Voltage-mode universal filter with one input and five outputs using DDCCTAs and all- grounded passive components. Microelectron J 43:555–561

    Google Scholar 

  67. Channumsin O, Tangsrirat W (2013) Single-input four-output voltage-mode universal filter using single DDCCTA. Microelectron J 44:1084–1091

    Google Scholar 

  68. Tangsrirat W, Channumsin O, Pukkalanun T (2013) Universal voltage-mode SIFO-type biquad with fully MOS-C realization using DDCCTAs. Ind J Pure Appl Phys 51:516–522

    Google Scholar 

  69. Jaikla W, Khateb F, Siripongdee S, Supavarasuwat P, Suwanjan P (2013) Electronically tunable current-mode biquad filter employing CCCDTAs and grounded capacitors with low input and high output impedance. Int J Electron Commun (AEU) 67:1005–1009

    Google Scholar 

  70. Alzaher H, Elwan H, Ismail M (2000) CMOS baseband filter for WCDMA integrated wireless receivers. Electron Lett 36:1515–1516

    Google Scholar 

  71. Chang CM, Al-Hashimi BM, Wang CL, Hung CW (2003) Single fully differential current conveyor biquad filters. IEE Proc Circ Devices Syst 150:394–398

    Google Scholar 

  72. Chang CM, Chen HP (2005) Single FDCCII-based tunable universal voltage-mode filter. Circ Syst Sig Process 24:221–227

    MATH  Google Scholar 

  73. Mahmoud SA (2007) Fully differential CMOS CCII based on differential difference transconductor. Analog Integr Circ Sig process 50:195–203

    Google Scholar 

  74. Chen HP (2008) Voltage-mode FDCCII-based universal filters. Int J Electron Commun (AEU) 62:320–323

    Google Scholar 

  75. Lee CN, Chang CM (2009) Single FDCCII-based mixed-mode biquad filter with eight outputs. Int J Electron Commun (AEU) 63:736–742

    Google Scholar 

  76. Gur F, Anday F (2009) Simulation of a novel current-mode universal filter using FDCCIIs. Analog Integr Circ Sig Process 60:231–236

    Google Scholar 

  77. Liao YZ, Chen HP, Lee WT (2009) Versatile universal voltage-mode filter employing minimum components. IEICE Electron Express 6:1246–1252

    Google Scholar 

  78. Chen HP (2009) Single FDCCII-based universal voltage-mode filter. Int J Electron Commun (AEU) 63:713–719

    Google Scholar 

  79. Kacar F, Yesil A (2010) Voltage mode universal filters employing single FDCCII. Analog Integr Cir Sig Process 63:137–142

    Google Scholar 

  80. Kacar F, Metin B, Kuntman H, Cicekoglu O (2010) A new high-performance CMOS fully differential second-generation current conveyor with application example of biquad filter realization. Int J Electron 97:499–510

    Google Scholar 

  81. Maheshwari S, Mohan J, Chauhan DS (2009) Voltage-mode cascadable app-pass sections with two grounded passive components and one active element. IET Circ Devices Syst 4:113–122

    Google Scholar 

  82. Kacar F, Kuntman H (2010) New current-mode filters using single FDCCII with grounded resistors and capacitors. Online J Electron Electr Eng 2:341–345

    Google Scholar 

  83. Chen HP (2010) Versatile multifunction universal voltage-mode biquadratic filter. Int J Electron Commun (AEU) 64:983–987

    Google Scholar 

  84. Maheshwari S, Mohan J, Chauhan DS (2011) Novel cascadable all-pass/notch filters using a single FDCCII and grounded capacitors. Circ Syst Sig Process 30:643–654

    MATH  Google Scholar 

  85. Metin B, Herencsar N, Pal K (2011) Supplementary first-order all-pass filters with two grounded passive elements using FDCCII. Radioengineering 20:433–437

    Google Scholar 

  86. Kacar F, Yesil A, Kuntman H (2012) Current-mode biquad filters employing single FDCCII. Radioengineering 21:1269–1278

    Google Scholar 

  87. Mohan J, Maheshwari S (2014) Additional high-input low-output impedance voltage-mode all-pass sections. J Circ Syst Comput 23:1450077, 14pages

    Google Scholar 

  88. Ozoguz S, Toker A, Cicekoglu O (2000) First-order allpass sections-based current-mode universal filter using ICCIIs. Electron Lett 36:1443–1444

    Google Scholar 

  89. Minaei S, Yuce E, Cicekoglu O (2006) ICCII-based voltage-mode filter with single input and six outputs employing grounded capacitors. Circ Syst Sig Process 25:559–566

    MATH  Google Scholar 

  90. Soliman AM (2007) Generation of grounded capacitor ICCII-based band-pass filters. J Circ Syst Comput 16:553–566

    Google Scholar 

  91. Soliman AM (2007) Voltage mode and current mode Tow Thomas bi-quadratic filters using inverting CCII. Int J Circ Theor Appl 35:463–467

    Google Scholar 

  92. Toker A, Zeki A (2007) Tunable active network synthesis using ICCIIs. Int J Electron 94:335–351

    Google Scholar 

  93. Soliman AM (2008) New grounded capacitor current mode band-pass low-pass filters using two balanced output ICCII. J Active Passiv Electron Devices 3:175–184

    Google Scholar 

  94. Soliman AM (2008) Kerwin Huelsman Newcomb filter using inverting CCII. J Active Passiv Electron Devices 3:273–279

    Google Scholar 

  95. Soliman AM (2008) Current mode filters using two output inverting CCII. Int J Circ Theor Appl 36:875–881

    Google Scholar 

  96. Soliman AM (2009) New current mode low-pass filter using identical single output current conveyors. J Active Passiv Electron Devices 4:21–33

    Google Scholar 

  97. Horng JW (2011) Current-mode universal biquadratic filter with five inputs and one output using three ICCIIs. Ind J Pure Appl Physics 49:214–217

    Google Scholar 

  98. Chen HP (2012) Versatile current-mode universal biquadratic filter using plus-type dual-output ICCIIs. Ind J Pure Appl Physics 50:188–198

    Google Scholar 

  99. Ibrahim MA (2013) Electronically tunable single-input multi-output current-mode biquad filter suitable for easy cascading. Eng Tech J 31:1972–1981

    Google Scholar 

  100. Chen HP (2014) Voltage-mode multifunction biquadratic filter with one input and six outputs using two ICCIIs. Sci World J 2014:Article ID 432570, 7p

    Google Scholar 

  101. Salama KN, Elwan HO, Soliman AM (2001) Parasitic-capacitance-insensitive voltage-mode MOSFET-C filters using differential current voltage conveyor. Circ Syst Sig Process 20:11–26

    Google Scholar 

  102. Soliman AM, Madian AH (2009) MOS-C KHN filter using voltage Op Amp, CFOA, OTRA and DCVC. J Circ Syst Comput 18:733–769

    Google Scholar 

  103. Fabre A (1995) Third-generation current conveyor: a new helpful active element. Electron Lett 31:338–339

    Google Scholar 

  104. Maheshwari S, Khan IA (2001) Novel first order all-pass sections using a single CCIII. Int J Electron 88:773–778

    Google Scholar 

  105. Kuntman H, Cicekoglu O, Ozoguz S (2002) A modified third generation current conveyor, its characterization and applications. Frequenz 56:47–54

    Google Scholar 

  106. Maheshwari S, Khan IA (2004) Novel first-order current-mode all-pass sections using CCIII. Active Passive Electron Comp 27:111–117

    Google Scholar 

  107. Yuce E, Metin B, Cicekoglu O (2004) Current-mode biquadratic filters using single CCIII and minimum number of passive elements. Frequenz 58:225–228

    Google Scholar 

  108. Cam U (2005) A new transadmittance type first-order allpass filter employing single third generation current conveyor. Analog Integr Circ Sig Process 43:97–99

    Google Scholar 

  109. Hwang YS, Chen JJ, Li JP (2007) New current-mode all-pole and elliptic filters employing current conveyors. Electr Eng 89:457–459

    Google Scholar 

  110. Chunhua W, Keskin AU, Yang L, Qiujing Z, Sichuan D (2010) Minimum configuration insensitive multifunctional current-mode biquad using current conveyors and all-grounded passive components. Radioengineering 19:178–184

    Google Scholar 

  111. Minaei S (2009) Electronically tunable current-mode universal biquad filter using dual-X current conveyors. J Circ Syst Comp 18:665–680

    Google Scholar 

  112. Minaei S, Yuce E (2010) Unity/variable-gain voltage-mode/current-mode first-order all-pass filters using single dual-X second-generation current conveyor. IETE J Res 56:305–312

    Google Scholar 

  113. Maheshwari S, Chaturvedi B (2012) High-input low-output impedance all-pass filters using one active element. IET Circ Devices Syst 6:103–110

    Google Scholar 

  114. Maheshwari S, Chaturvedi B (2013) Additional high input low output impedance analog networks. Active Passiv Electron Comp 2013: Article ID 574925, 9p

    Google Scholar 

  115. Mohan J (2013) Single active element based current-mode all-pass filter. Int J Comput Appl 82:23–27

    Google Scholar 

  116. Beg P (2014) Tunable first-order resistless all-pass filter with low output impedance. Sci World J 2014: Article ID 219453, 6p

    Google Scholar 

  117. Gunes EO, Anday F (1995) Realization of current-mode low pass filters using CFCCIIs. Electron Lett 31:2161–2162

    Google Scholar 

  118. Gunes EO, Anday F (1996) Realization of current-mode universal filter using CFCCIIps. Electron Lett 32:1081–1082

    Google Scholar 

  119. Abuelma’atti MT, Tassaduq NA (1998) High-order current transfer function synthesis using translinear current conveyors. Frequenz 52:76–78

    Google Scholar 

  120. Keskin AU, Cam U (2007) Insensitive high-output impedance minimum configuration SITO-type current-mode biquad using dual-output current conveyors and grounded passive components. Int J Electron Commun (AEU) 61:341–344

    Google Scholar 

  121. Yucel F, Yuce E (2014) CCII based more tunable voltage-mode all-pass filters and their quadrature oscillator applications. Int J Electron Commun (AEU) 68:1–9

    Google Scholar 

  122. Ghallab YH, Badawy W (2006) The operational floating current conveyor and its applications. J Circ Syst Comp 15:351–372

    Google Scholar 

  123. Pandey N, Nand D, Khan Z (2013) Single-input four-output current mode filter using operational floating current conveyor. Active Passiv Electron Comp 2013: Article ID 318560, 8p

    Google Scholar 

  124. Biolek D, Vrba K, Cajka J, Dostal T (2000) General three-port current conveyor: a useful tool for network design. J Electr Eng 51:36–39

    Google Scholar 

  125. Senani R, Singh AK (2002) A new universal current mode biquad filter. Frequenz 56:55–59

    Google Scholar 

  126. Senani R, Singh AK, Singh VK (2003) New tunable SIMO type current mode universal biquad using only three MOCCs and all grounded passive elements. Frequenz 57:160–161

    Google Scholar 

  127. Abdalla KK, Bhaskar DR, Senani R (2012) Configuration for realizing a current mode universal filter and dual mode quadrature single resistor controlled oscillator. IET Circ Devices Syst 6:159–167

    Google Scholar 

  128. Chunhua W, Haiguang L, Yan Z (2009) Universal current mode filter with multiple inputs and one output using MOCCII and MO-CCCA. Int J Electron Commun 63:448–453

    Google Scholar 

  129. Jiang J, He Y (2009) Tunable frequency versatile filters implementation using minimum number of passive elements. Analog Integr Circ Sig Process 59:53–64

    Google Scholar 

  130. Senani R, Singh VK, Singh AK, Bhaskar DR (2005) Tunable current mode universal biquads employing only three MOCCs and all grounded passive elements: additional new realizations. Frequenz 59:1–5

    Google Scholar 

  131. Senani R (2006) New universal current mode biquad employing all grounded passive components but only two DOCCs. J Active Passiv Electron Devices 1:281–288

    Google Scholar 

  132. Tu SH, Chang CM, Liao KP (2002) Novel versatile insensitive universal current mode biquad employing two second generation current conveyors. Int J Electron 89:897–903

    Google Scholar 

  133. Wang HY, Lee CT (2001) Versatile insensitive current mode universal biquad implementation using current conveyors. IEEE Trans Circ Syst-II 48:409–413

    Google Scholar 

  134. Abuelma’atti MT, Bentrcia A (2004) A novel mixed-mode CCII based filter. Active Passiv Electron Comp 27:197–205

    Google Scholar 

  135. Abuelma’atti MT, Bentrcia A, Al-Shahrani SM (2004) A novel mixed mode current conveyor based filter. Int J Electron 91:191–197

    Google Scholar 

  136. Singh VK, Singh AK, Senani R (2005) Dual function capability of recently proposed four current conveyor based VM biquad. J Circ Syst Comput 14:51–56

    Google Scholar 

  137. Kumar P (2006) FTFNs and their applications in circuit synthesis and design. PhD thesis (Supervisor Raj Senani), Faculty of technology, University of Delhi, vol 4, pp 141–172

    Google Scholar 

  138. Horng JW (2012) Analytical synthesis of general high-order voltage/current transfer functions using CCIIs. Microelectron J 43:546–554

    Google Scholar 

  139. Abuelma’atti MT, Khan MH (1995) Low component current-mode universal filter. Electron Lett 31:2160–2161

    Google Scholar 

  140. Elwan HO, Soliman AM (1996) A novel CMOS current conveyor realization with an electronically tunable current mode filter suitable for VLSI. IEEE Trans Circ Syst-II 43:663–670

    Google Scholar 

  141. Soliman AM (1996) New inverting-non-inverting band pass and low pass biquad circuit using current conveyors. Int J Electron 81:577–583

    Google Scholar 

  142. Horng JW, Weng RM, Lee MH, Chang CW (1997) Universal active current filter using two multiple current output OTAs and one CCIII. Int J Electron 82:241–247

    Google Scholar 

  143. Fabre A, Saaid O, Wiest F, Boucheron C (1997) Low power current-mode second order band pass IF filter. IEEE Trans Circ Syst-II 44:436–446

    Google Scholar 

  144. Zhang X, Ni X, Iwahashi M, Kambayashi N (1998) Realization of universal active complex filter using CCIIs and CFCIIs. IEICE Trans Fundament 2:244–251

    Google Scholar 

  145. Toker A, Ozoguz S (2000) Insensitive current-mode universal filter using dual output current conveyors. Int J Electron 87:667–674

    Google Scholar 

  146. Ozoguz S, Acar C, Toker A, Gunes EO (2001) Derivation of low-sensitivity current-mode CCII-based filters. IEE Proc Circ Devices Syst 148:115–120

    Google Scholar 

  147. Sagbas M, Fidanboylu K, Bayram MC (2004) A new current-mode multifunction filter with high impedance outputs using minimum number of passive elements. Int J Sig Process 1:1304–4494

    Google Scholar 

  148. Tsukutani T, Edasaki S, Sumi Y, Fukui Y (2006) Current-mode universal biquad filter using OTAs and DO-CCII. Frequenz 60:11–12

    Google Scholar 

  149. Pandey N, Paul SK, Bhattacharyya A, Jain SB (2007) Insensitive mixed mode biquad using reduced number of active and passive components. J Active Passive Electron Devices 2:117–125

    Google Scholar 

  150. Sagbas M, Koksal M (2007) Voltage-mode three-input single-output multifunction filters employing minimum number of components. Frequenz 61:3–4

    Google Scholar 

  151. Pandey N, Paul SK (2006) Multi-input single-outputs universal current mode biquad. J Active Passive Electron Devices 1:229–240

    Google Scholar 

  152. Pandey N, Paul SK, Jain SB (2008) Voltage mode universal filter using two plus type CCIIs. J Active Passive Electron Devices 3:165–173

    Google Scholar 

  153. Pandey N, Paul SK, Jain SB (2008) New high-input impedance voltage-mode universal biquad; multi input multi output. J Active Passive Electron Devices 3:93–100

    Google Scholar 

  154. Soliman AM (2008) The CCII+ and the ICCII as basic building blocks in low-pass filter realizations. Int J Circ Theor Appl 36:493–509

    MATH  Google Scholar 

  155. Lahiri A (2011) New canonic active RC sinusoidal oscillator circuits using second-generation current conveyors with application as a wide-frequency digitally controlled sinusoid generator. Active Passiv Electron Comp Article ID:274394, 8p

    Google Scholar 

  156. Vrba K, Cajka J, Zeman V (1998) N-th order filters using balanced-output CCII/-conveyors. Radioengineering 7:16–19

    Google Scholar 

  157. Abuelma’atti MT, Alzaher HA (1998) Versatile active biquad based on dual-output second-generation current conveyors. Active Passiv Elec Comp 20:151–155

    Google Scholar 

  158. Gunes EO, Toker A, Ozoguz S (1999) Insensitive current-mode universal filter with minimum components using dual-output current conveyors. Electron Lett 35:524–525

    Google Scholar 

  159. Zhang X, Ni X, Iwahashi M, Kambayashi N (1999) Realization of universal active complex filter using CCIIs and CFCCIIs. Analog Integr Circ Sig Process 20:129–137

    Google Scholar 

  160. Sedef H, Acar C (1999) Simulation of resistively terminated LC ladder filters using a new basic cell involving current conveyors. Microelectron J 30:63–68

    Google Scholar 

  161. Toker A, Ozoguz S, Cicekoglu O (2000) A new current-mode multifunction filter with minimum components using dual-output current conveyors. IEICE Trans Fundam 83-A:2382–2384

    Google Scholar 

  162. Gunes EO, Ozoguz S, Toker A (2000) Insensitive current-mode universal filter with low component spread using dual-output current conveyors. AEU 54:127–132

    Google Scholar 

  163. Toker A, Ozoguz S (2001) Integrable current-mode filter realization using dual output current conveyors for low-frequency operation. Int J Electron Commun 55:145–149

    Google Scholar 

  164. Cicekoglu O, Tarim N, Kuntman H (2002) Wide dynamic range high output impedance current mode multifunction filters with dual output current conveyors. Int J Electron Commun 56:55–60

    Google Scholar 

  165. Horng JW (2002) Current conveyors based current-mode universal biquadratic filter. J Chin Inst Electr Eng 9:147–150

    Google Scholar 

  166. Hwang YS, Hung PT, Chen W, Liu SI (2002) Systematic generation of current mode linear transformation filters based on multiple output CCIIs. Analog Integr Circ Sig Process 32:123–134

    Google Scholar 

  167. Tsukutani T, Sumi Y, Higashimura M, Fukui Y (2005) Current mode universal biquad circuit using MO-OTAs and DO-CCII. In: Proceedings of IEEE international symposium on circuits and systems, vol 2, Institute of Electrical and Electronics Engineers, New York, pp 1589–1592

    Google Scholar 

  168. Horng JW, Hou CL, Chang CM, Shie JY, Chang CH (2007) Universal current filter with single input and three outputs using MOCCIIs. Int J Electron 94:327–333

    Google Scholar 

  169. Tsukutani T, Sumi Y, Fukui Y (2007) Novel current-mode biquad filter using OTAs and DO-CCII. Int J Electron 94:99–105

    Google Scholar 

  170. Keskin AU, Cam U (2007) Insensitive high-output impedance minimum configuration SITO-type current mode biquad using dual-output current conveyors and grounded passive components. Int J Electron Commun 61:341–344

    Google Scholar 

  171. Chen HP, Chen K, Chen CY, Chen MS (2011) Versatile CCII-based universal current-mode biquadratic filter. PIERS Proc Suzhou China: 488–491

    Google Scholar 

  172. Koksal M, Sagbas M (2008) A versatile signal flow graph realization of a general current transfer function. Int J Electron Commun 62:33–40

    Google Scholar 

  173. Horng JW (2011) High output impedance current-mode universal biquadratic filters with five inputs using multi-outputs CCIIs. Microelectron J 42:693–700

    Google Scholar 

  174. Horng JW, Hou CL, Guo YS, Hsu CH, Yang DY, Ho MJ (2012) Low input and high output impedances current mode first order all pass filter employing grounded passive components. Circ Syst 3:176–179

    Google Scholar 

  175. Chen HP (2013) Versatile current-mode universal biquadratic filter using DO-CCIIs. Int J Electron 100:1010–1031

    Google Scholar 

  176. Mahmoud SA, Soliman EA (2013) Novel CCII-based field programmable analog array and its application to a sixth order Butterworth LPF. Adv Microelectron Eng 1:9–16

    Google Scholar 

  177. Lee CN (2013) Versatile universal current-mode and transresistance mode biquadratic filter using two MOCCIIs and grounded passive components. J Circ Syst Comput 22:1250077-1–1250077-18

    Google Scholar 

  178. Maghami MH, Sodagar AM (2013) Low power, low voltage, dual-output, second generation current conveyor and its application in low pass filter design. J Circ Syst Comput 22:1350044-1–1350044-10

    Google Scholar 

  179. Alzaher H, Tasadduq N, Al-Ees O (2013) Implementation of reconfigurable nth-order filter based on CCII. Analog Intregr Circ Sig Process 75:539–545

    Google Scholar 

  180. Abdalla KK, Bhaskar DR, Senani R (2010) Configuration for realizing a current mode universal filter and dual-mode quadrature single resistor controlled oscillator. IET Circ Devices Syst 6:159–167

    Google Scholar 

  181. Eajka J, Novotny V (2003) Two mode high order filters using three port voltage conveyors. ElectronicsLetters.com. 30:1–9

    Google Scholar 

  182. Khanday F, Shah N (2013) A low voltage and low-power Sinh-domain universal biquadratic filter for low-frequency applications. Turk J Elec Eng Comp Sci 21:2205–2217

    Google Scholar 

  183. Horng JW, Hou CL, Chang CM, Chung WY, Wei HY (2005) Voltage mode universal biquadratic filters with one input and five outputs using MOCCCIIs. Comput Electr Eng 31:190–202

    MATH  Google Scholar 

  184. Minaei S, Yuce E (2009) All grounded passive elements current mode all-pass filter. J Circ Syst Comput 18:31–43

    Google Scholar 

  185. Al-Shahrani SM (2007) CMOS wideband auto-tuning phase shifter circuit. Electron Lett 43:804–805

    Google Scholar 

  186. Abdalla KK (2013) Universal current mode biquad employing dual output current conveyors and MO-CCCA with grounded passive elements. Circ Syst 4:83–88

    Google Scholar 

  187. Cicekoglu O (2001) High output impedance current mode four function filter with reduced number of active and passive elements using the dual output current conveyor. Analog Integr Circ Sig Process 28:201–204

    Google Scholar 

  188. Soliman AM (1995) Current mode universal filter. Electron Lett 31:1420–1421

    Google Scholar 

  189. Soliman AM (2008) Current-mode universal filters using current conveyors. Circ Syst Sig Process 27:405–427

    MathSciNet  Google Scholar 

  190. Sagbas M, Koksal M (2008) Current-mode state-variable filter. Frequenz 62:37–42

    Google Scholar 

  191. Wang C, Zhao Y, Zhang Q, Du S (2009) A new current mode SIMO-type universal biquad employing multi-output current conveyors (MOCCIIs). Radioengineering 18:83–88

    Google Scholar 

  192. Metin B, Minaei S, Cicekoglu O (2007) Enhanced dynamic range analog filter topologies with a notch/all-pass circuit example. Analog Integr Circ Sig Process 51:181–189

    Google Scholar 

  193. Tangsrirat W, Channumsin O (2011) Minimum-component current-mode universal filter. Ind J Pure Appl Phys 49:137–141

    Google Scholar 

  194. Horng JW, Chiu TY, Hsiao CP, Huang GT (2013) Three-inputs-one-output current-mode universal biquad using two current conveyors. J Circ Syst Comput 22. doi: 10.1142/S021812661340001X, 12pages

  195. Singh AK, Senani R (2002) A new four-CC-based configuration for realizing a voltage mode biquad filter. J Circ Syst Comput 11:213–218

    Google Scholar 

  196. Biolek D, Cajka J, Vrba K, Zeman V (2002) Nth-order allpass filters using current conveyors. J Electr Eng 53:50–53

    Google Scholar 

  197. Minarcik M, Vrba K (2006) Low-output and high-input impedance frequency filters using universal voltage conveyor for high-speed data communication systems. In: Proceedings of international conference on networking ICN 2006, Mauritius, pp 155–158

    Google Scholar 

  198. Minarcik M, Vrba K (2008) Single-input six-output voltage-mode filter using universal voltage conveyors. IEICE Sig Process E91-A:2035–2037

    Google Scholar 

  199. Koton J, Vrba K, Herencsar N (2009) Tunable filter using voltage conveyors and current active elements. Int J Electron 96:787–794

    Google Scholar 

  200. Koton J, Herencsar N, Vrba K (2010) Single-input three-output variable Q and ω0 filters using universal voltage conveyors. Int J Electron 97:531–538

    Google Scholar 

  201. Jerabek J, Vrba K (2010) SIMO type low-input and high-output impedance current-mode universal filter employing three universal current conveyors. Int J Electron Commun (AEU) 64:588–593

    Google Scholar 

  202. Koton J, Herencsar N, Vrba K (2011) KHN-equivalent voltage-mode filters using universal voltage conveyors. Int J Electron Commun (AEU) 65:154–160

    Google Scholar 

  203. Akerberg D, Mossberg K (1974) A versatile active RC building block with inherent compensation for the finite bandwidth of the amplifier. IEEE Trans Circ Syst 21:75–78

    Google Scholar 

  204. Elwan HO, Soliman AM (1997) Novel CMOS differential voltage current conveyor and its applications. IEE Proc Circ Devices Syst 144:195–200

    Google Scholar 

  205. Chen HP (2006) Novel voltage-mode universal biquad filter. Electron World 1842:41

    Google Scholar 

  206. Surakampontorn W, Riewruja V, Kumwachara K, Dejhan K (1991) Accurate CMOS-based current conveyors. IEEE Trans Instrum Meas 40:699–702

    Google Scholar 

  207. Metin B, Cicekoglu O (2009) Component reduced all-pass filter with a grounded capacitor and high-impedance input. Int J Electron 96:445–455

    Google Scholar 

  208. Altun M, Kuntman H, Minaei S, Sayin OK (2009) Realization of nth–order current transfer function employing ECCIIs and application examples. Int J Electron 96:1115–1126

    Google Scholar 

  209. Herencsar N, Koton J, Vrba K (2009) Single CCTA-based universal biquadratic filters employing minimum components. Int J Comput Electr Eng 1:309–312

    Google Scholar 

  210. Ayten UE, Sagbas M, Sedef H (2010) Current mode leapfrog ladder filters using a new active block. Int J Electron Commun (AEU) 64:503–511

    Google Scholar 

  211. Maheshwari S (2013) Current conveyor all-pass sections: brief review and novel solution. Sci World J 2013: Article ID 429391, 6p

    Google Scholar 

  212. Yildiz HA, Toker A, Ozoguz S (2013) Biquadratic filter applications using a fully-differential active-only integrator. Radioengineering 22:3–13

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Senani, R., Bhaskar, D.R., Singh, A.K. (2015). Analog Filter Design Revisited: Circuit Configurations Using Newer Varieties of CCs. In: Current Conveyors. Springer, Cham. https://doi.org/10.1007/978-3-319-08684-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08684-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08683-5

  • Online ISBN: 978-3-319-08684-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics