Skip to main content

Varieties of Current Conveyors

  • Chapter
  • First Online:

Abstract

This chapter describes numerous varieties of CCs evolved till date. In each case, the characterization of the building block is given, its salient features have been outlined and wherever necessary and relevant, the most significant applications/advantageous features have also been highlighted.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Filanovsky IM, Stromsmoe KA (1981) Current–voltage conveyor. Electron Lett 17:129–130

    Article  Google Scholar 

  2. Senani R (1980) Novel circuit implementation of current conveyors using an O.A. and an O.T.A. Electron Lett 16:2–3

    Article  Google Scholar 

  3. Dostal T, Pospisil J (1982) Current and voltage conveyors- a family of three-port immittance converters. ISCAS, Rome, pp 419–422

    Google Scholar 

  4. Senani R (1984) Novel application of generalized current conveyor. Electron Lett 20:169–170 (Errata: (1984) 20: 356)

    Article  Google Scholar 

  5. Toumazou C, Payne A, Lidgey FJ (1991) Operational floating conveyor. Electron Lett 27:651–652

    Article  Google Scholar 

  6. Fabre A (1995) Third-generation current conveyor: a new helpful active element. Electron Lett 31:338–339

    Article  Google Scholar 

  7. Chiu W, Liu SI, Tsao HW, Chen JJ (1996) CMOS differential difference current conveyors and their applications. IEE Proc Circ Devices Syst 143:91–96

    Article  MATH  Google Scholar 

  8. Sackinger E, Guggenbuhl W (1987) A versatile building block: the CMOS differential difference amplifier. IEEE J Solid State Circ 22:287–294

    Article  Google Scholar 

  9. Surakampontorn W, Riewruja V, Kumwachara K, Dejhan K (1991) Accurate CMOS based circuit conveyors. IEEE Trans Instrum Meas 40:699–702

    Article  Google Scholar 

  10. Gupta SS, Senani R (2001) CMOS differential difference current conveyors and their applications. IEE Proc Circ Devices Syst 148:335–336

    Article  Google Scholar 

  11. Prommee P, Somdunyakanok M (2011) CMOS-based current-controlled DDCC and its applications to capacitance multiplier and universal filter. Int J Electron Commun(AEU) 65:1–8

    Article  Google Scholar 

  12. Horng JW, Hou CL, Chang CM, Chung WY, Wei HY (2005) Voltage-mode universal biquadratic filters with one input and five outputs using MOCCIIs. Comput Electr Eng 31:190–202

    Article  MATH  Google Scholar 

  13. Wu J, El Masry E (1996) Current-mode ladder filters using multiple output current conveyors. IEE Proc Circ Devices Syst 143:218–222

    Article  MATH  Google Scholar 

  14. Hwang YS, Hung PT, Chen W, Liu SI (2002) Systematic generation of current-mode linear transformation filters based on multiple output CCIIs. Analog Integr Circ Sig Process 32:123–134

    Article  Google Scholar 

  15. Abdalla KK (2013) Universal current-mode biquad employing dual output current conveyors and MO-CCCA with grounded passive elements. Circ Syst 4:83–88

    Article  Google Scholar 

  16. Maheshwari S (2009) Current-mode third-order quadrature oscillator. IET Circ Devices Syst 4(3):188–195

    Article  Google Scholar 

  17. Elwan HO, Soliman AM (1997) Novel CMOS differential voltage current conveyor and its applications. IEE Proc Circ Devices Syst 144:195–200

    Article  Google Scholar 

  18. Pal K (1989) Modified current conveyors and their applications. Microelectron J 20:37–40

    Article  Google Scholar 

  19. Hassan TM, Mahmoud SA (2010) New CMOS DVCC realization and applications to instrumentation amplifier and active-RC filters. Int J Electron Commun (AEU) 64:47–55

    Article  Google Scholar 

  20. Minaei S, Yuce E (2012) A simple schmitt trigger circuit with grounded passive elements and its application to square/triangular wave generator. Circ Syst Sig Process 31:877–888

    Article  MathSciNet  Google Scholar 

  21. Ibrahim MA, Minaei S, Kuntman H (2005) A 22.5 MHz current mode KHN-biquad using differential voltage current conveyor and grounded passive elements. Int J Electron Commun (AEU) 59:311–318

    Article  Google Scholar 

  22. Horng JW, Hou CL, Chang CM, Chung WY (2006) Voltage-mode universal biquadratic filters with one input and five outputs. Analog Integr Circ Sig Process 47:73–83

    Article  Google Scholar 

  23. Laoudias C, Psychalinos C (2014) Differential voltage current controlled current conveyor with low-voltage operation capability. Int J Electron 101:939–949

    Article  Google Scholar 

  24. Soliman AM (2009) On the DVCC and the BOCCII as adjoint elements. J Circ Syst Comput 18:1017–1032

    Article  Google Scholar 

  25. Pal K, Nigam MJ (2008) Novel active impedances using current conveyors. J Active Passiv Electron Devices 3:29–34

    Google Scholar 

  26. Awad IA, Soliman AM (1999) Inverting second generation current conveyors: the missing building blocks, CMOS realizations and applications. Int J Electron 86:413–432

    Article  Google Scholar 

  27. Soliman AM, Saad RA (2010) Generation of second generation current conveyor (CCII) family from inverting second generation current conveyor (ICCII). Int J Electron 97:405–414

    Article  Google Scholar 

  28. Soliman AM (2008) The inverting second generation current conveyors as universal building blocks. Int J Electron Commun (AEU) 62:114–121

    Article  Google Scholar 

  29. Sobhy EA, Soliman AM (2007) Novel CMOS realizations of the inverting second-generation current conveyor and applications. Analog Integr Circ Sig process 52:57–64

    Article  Google Scholar 

  30. Beevao D, Vrba K (2000) Novel generations of inverting current conveyor using universal current conveyor. Electron J Eng Tech 3:4

    Google Scholar 

  31. Sobhy EA, Soliman AM (2009) Novel CMOS realization of balanced-output third generation inverting current conveyor with applications. Circ Syst Sig Process 28:1037–1051

    Article  MATH  Google Scholar 

  32. Salama K, Soliman A (1999) Novel MOS-C quadrature oscillator using the differential current voltage conveyor. In: 42nd IEEE midwest symposium on circuits and systems, Las Cruces, NM, vol 1, pp 279–282

    Google Scholar 

  33. Acar C, Ozoguz O (1999) A new versatile building block: current differencing buffered amplifier suitable for analog signal-processing filters. Microelectron J 30:157–160

    Article  Google Scholar 

  34. Salama KN, Elwan HO, Soliman AM (2001) Parasitic-capacitance-insensitive voltage-mode MOSFET-C filters using differential current voltage conveyor. Circ Syst Sig Process 20:11–26

    Article  Google Scholar 

  35. Soliman AM, Madian AH (2009) MOS-C KHN filter using voltage OP AMP CFOA, OTRA and DCVC. J Circ Syst Comp 18:733–769

    Article  Google Scholar 

  36. Piyatat T, Tangsrirat W, Surakampontorn W (2005) Current-controlled differential current voltage conveyor and its applications, ECTI-Conference, Pathumthani, Thailand, pp 661–646

    Google Scholar 

  37. El-Adawy AA, Soliman AM, Elwan HO (2000) A novel fully differential current conveyor and applications for analog VLSI. IEEE Trans Circ Syst-II 47:306–313

    Google Scholar 

  38. Kacar F, Metin B, Kuntman H, Cicekoglu O (2010) A new high-performance CMOS fully differential second-generation current conveyor with application example of biquad filter realisation. Int j Electron 97:499–510

    Article  Google Scholar 

  39. Alzaher HA, Elwan HO, Ismail M (2000) CMOS fully differential second-generation current conveyor. Electron Lett 36:1095–1096

    Article  Google Scholar 

  40. Sobhy E, Soliman AM (2010) Realizations of fully differential voltage second generation current conveyor with an application. Int J Circ Theor Appl 38:441–452

    Google Scholar 

  41. Chang CM, Soliman AM, Swamy MNS (2007) Analytical synthesis of low-sensitivity high-order voltage-mode DDCC and FDCCII-grounded R and C All-pass filter structures. IEEE Trans Circ Syst-I 54:430–1443

    Article  Google Scholar 

  42. Mahmoud SA (2006) New fully-differential CMOS second-generation current conveyor. ETRI J 28:495–501

    Article  Google Scholar 

  43. Alzaher HA (2004) CMOS highly liner fully differential current conveyor. Electron Lett 40:214–216

    Article  Google Scholar 

  44. Soliman AM (1998) Generalized voltage and current conveyors: practical realizations using CCII. IEICE Trans Fundam 5E–81:973–975

    Google Scholar 

  45. Biolek D, Vrba K, Cajka J, Dostal T (2000) General three-port current conveyor: a useful tool for network design. J Electr Eng 51:36–39

    Google Scholar 

  46. Becvar D, Vrba K, Zeman V, Musil V (2000) Novel universal active block: a universal current conveyor. ISCAS 3:471–474

    Google Scholar 

  47. Cajka J, Dostal T, Vrba K (2004) General view on current conveyors. Int J Circ Theor Appl 32:133–138

    Article  Google Scholar 

  48. Cajka J, Vrba K (2004) The voltage conveyor may have in fact found its way into circuit theory. Int J Electron Commun (AEU) 58:244–248

    Article  Google Scholar 

  49. Sponar R, Vrba K, Kubanek D (2005) Universal conveyor-novel active device suitable for analog signal processing. In: Proceedings of the 9th international conference on circuit, WSEAS, Wisconsin

    Google Scholar 

  50. Kuntman H, Cicekoglu O, Ozoguz S (2002) A modified third generation current conveyor, its characterization and applications. Frequenz 56:47–54

    Article  Google Scholar 

  51. Zeki A, Toker A (2002) The dual-X current conveyor (DXCCII): a new active device for tunable continuous-time filters. Int J Electron 89:913–923

    Article  Google Scholar 

  52. Beg P, Maheshwari S (2014) Generalized filter topology using grounded components and single novel active element. Circ Syst Sig Process. doi:10.1007/s00034-014-9807-4

    Google Scholar 

  53. Kacar F, Metin B, Kuntman H (2010) A new CMOS dual-X second generation current conveyor (DXCCII) with an FDNR circuit application. Int J Electron Commun (AEU) 64:774–778

    Article  Google Scholar 

  54. Maheshwari S, Ansari MS (2012) Catalog of realizations for DXCCII using commercially available ICs and applications. Radioengineering 21:281–289

    Google Scholar 

  55. Sato T, Wada K, Takagi S, Fujii N (2002) Extension of current conveyor concept and its applications. IEICE Trans Fundam E85-A:414–421

    Google Scholar 

  56. Alzaher HA, Elwan H, Ismail M (2003) A CMOS fully balanced second-generation current conveyor. IEEE Trans Circ Syst-II 50:278–287

    Article  Google Scholar 

  57. Gift SJG (2005) The operational conveyor and its application in an accurate current amplifier with gain-independent bandwidth. Int J Electron 92(1):33–47

    Article  Google Scholar 

  58. Horng JW, Hou CL, Chang CM (2008) Multi-input differential current conveyor, CMOS realization and application. IET Circ Devices Syst 2:469–475

    Article  Google Scholar 

  59. Hwang YS, Liu WH, Tu SH, Chen JJ (2009) New building block: multiplication-mode current conveyor. IET Circ Devices Syst 3:41–48

    Article  Google Scholar 

  60. De Marcellis A, Ferri G, Guerrini NC, Scotti G, Stornelli V, Trifiletti A (2009) The VCG-CCII: a novel building block and its application to capacitance multiplication. Analog Integr Circ Sig Process 58:55–59

    Article  Google Scholar 

  61. Khan IA, Nahhas AM (2012) Reconfigurable voltage mode phase shifter using low voltage digitally controlled CMOS CCII. Electr Electron Eng 2:226–229

    Article  Google Scholar 

  62. Alzaher H, Tasadduq N, Al-Ees O, Al-Ammari F (2013) A complementary metal-oxide semiconductor digitally programmable current conveyor. Int J Circ Theor Appl 41:69–81

    Google Scholar 

  63. Fongsamut C, Surakampontorn W (2010) Minimal realization for single-element-controlled sinusoidal oscillators using single current conveyor. In: International symposium on communication and information technology, Tokyo, pp 196–199

    Google Scholar 

  64. Chavoshisani R, Hashemipour O (2011) Differential current conveyor based current comparator. Int J Electron Commun(AEU) 65:949–953

    Article  Google Scholar 

  65. Metin B, Herencsar N, Vrba K (2012) A CMOS DCCII with a grounded capacitor based cascadable all-pass filter application. Radioengineering 21:718–724

    Google Scholar 

  66. Soliman AM, Saad RA (2009) On the introduction of new floating current conveyors. J Circ Syst Comput 18:1005–1016

    Article  Google Scholar 

  67. Herencsar N, Koton J, Vrba K (2009) A new electronically tunable voltage-mode active- C phase shifter using UVC and OTA. IEICE Electron Express 6:1212–1218

    Article  Google Scholar 

  68. Zhang Q, Wang C, Sun J, Du S (2011) A new type of current conveyor and its application in fully balanced differential current-mode elliptic filter design. J Electr Eng 62:126–133

    Google Scholar 

  69. Chunhua W, Yang L, Qiujing Z, Yu F (2010) Systematic design of fully balanced differential current-mode multiple-loop feedback filters using CFBCII. Radioengineering 19:185–193

    Google Scholar 

  70. Kacar F, Yesil A, Minaei S, Kuntman H (2014) Positive/negative lossy/lossless grounded inductance simulators employing single VDCC and only two passive elements. Int J Electron Commun 68:73–78

    Article  Google Scholar 

  71. Prasad d, Ahmad J (2014) New electronically- controllable lossless synthetic floating inductance circuit using single VDCC. Circ Syst 5:13–17

    Article  Google Scholar 

  72. Jerabek J, Sotner R, Vrba K (2014) TISO adjustable filter with controllable-gain voltage differencing current conveyor. J Electr Eng 65:137–143

    Google Scholar 

  73. Kumngern M, Khateb F, Phasukkit P, Tungjitkusolmun S, Junnapiya S (2014) ECCCII- based current-mode universal filter with orthogonal control of ωo and Qo. Radioeng J 23:687–696

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Senani, R., Bhaskar, D.R., Singh, A.K. (2015). Varieties of Current Conveyors. In: Current Conveyors. Springer, Cham. https://doi.org/10.1007/978-3-319-08684-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08684-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08683-5

  • Online ISBN: 978-3-319-08684-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics