Skip to main content

The Evolution and the History of Current Conveyors

  • Chapter
  • First Online:
Current Conveyors
  • 1595 Accesses

Abstract

A historical account about the origin of Current Conveyors is given and important developments in the area, taken place during the past four decades have been highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith KC, Sedra A (1968) The current conveyor-a new circuit building block. Proc IEEE 56:1368–1369

    Article  Google Scholar 

  2. Smith KC, Sedra A (1969) A new simple wide-band current-measuring device. IEEE Trans Instrum Meas 18:125–128

    Article  Google Scholar 

  3. Sedra A, Smith KC (1970) A second-generation current conveyor and its applications. IEEE Trans Circ Theor 17:132–134

    Article  Google Scholar 

  4. Smith KC, Sedra A (1970) Realization of the Chua family of new nonlinear network elements using the current conveyor. IEEE Trans Circ Theor 17:137–139

    Article  Google Scholar 

  5. Black GGA, Friedmann RT, Sedra AS (1971) Gyrator implementation with integrable current conveyors. IEEE J Solid State Circ 6:396–399

    Article  Google Scholar 

  6. Bakhtiar MS, Aronhime P (1978) A current conveyor realization using operational amplifiers. Int J Electron 45:283–288

    Article  Google Scholar 

  7. Senani R (1980) Novel circuit implementation of current conveyors using an O.A. and an O.T.A. Electron Lett 16:2–3

    Article  Google Scholar 

  8. Huertas JL (1980) Circuit implementation of current conveyor. Electron Lett 16:225–226

    Article  Google Scholar 

  9. Senani R (1979) Novel active RC circuit for floating-inductor simulation. Electron Lett 15:679–680

    Article  Google Scholar 

  10. Singh V (1979) A new active—RC circuit realization of floating inductance. Proc IEEE 67:1659–1660

    Article  Google Scholar 

  11. Filanovsky IM, Stromsmoe KA (1981) Current-voltage conveyor. Electron Lett 17:129–130

    Article  Google Scholar 

  12. Kumar U (1981) Current conveyors: a review of the state of the art. IEEE Circ Syst Mag 3:10–14

    Article  Google Scholar 

  13. Dostal T, Pospisil J (1982) Current and voltage conveyors-a family of three-port immittance converters. Int Symp Circ Syst:419–422

    Google Scholar 

  14. Dostal T, Pospisil J (1982) Hybrid models of 3-port immittance convertors and current and voltage conveyors. Electron Lett 18:887–888

    Article  Google Scholar 

  15. Senani R (1984) Novel application of generalized current conveyor. Electron Lett 20:169–170; Errata (1984) Electron Lett 20: 356

    Article  Google Scholar 

  16. Senani R (1984) Floating ideal FDNR using only two current conveyors. Electron Lett 20:205–206

    Article  Google Scholar 

  17. Senani R (1986) On the realization of floating active elements. IEEE Trans Circ Syst 33:323–324

    Article  Google Scholar 

  18. Wilson B (1986) Using current conveyors. Electron Wirel World 92:28–32

    Google Scholar 

  19. Wilson B (1989) Analogue current mode circuits. Int J Elect Eng Educ 26:206–223

    Google Scholar 

  20. Kumar U, Shukla SK (1989) The implementation and applications of current conveyors. Microelectron J 20:25–46

    Article  Google Scholar 

  21. Pal K (1989) Modified current conveyors and their applications. Microelectron J 20:37–40

    Article  Google Scholar 

  22. Wilson B (1990) Recent developments in current conveyors and current-mode circuits. IEE Proc 137:63–77

    Google Scholar 

  23. Sedra AS, Roberts GW, Gohh F (1990) The current conveyor: history, progress and new results. IEE Proc 137:78–87

    Google Scholar 

  24. Rathore TS (1991) Correspondence: some more published literature on current conveyors. IEE Proc Circ Devices Syst 138:432

    Article  Google Scholar 

  25. Toumazou C, Payne A, Lidgey FJ (1991) Operational floating conveyor. Electron Lett 27:651–652

    Article  Google Scholar 

  26. Wilson B (1992) Trends in current conveyor and current-mode amplifier design. Int J Electron 73:573–583

    Article  Google Scholar 

  27. Fabre A, Saaid O (1993) Novel translinear impedance convertor and band pass filter applications. Electron Lett 29:746–747

    Article  Google Scholar 

  28. Fabre A (1995) Third-generation current conveyor: a new helpful active element. Electron Lett 31:338–339

    Article  Google Scholar 

  29. Chiu W, Liu SI, Tsao HW, Chen JJ (1996) CMOS differential difference current conveyors and their applications. IEE Proc Circ Devices Syst 143:91–96

    Article  MATH  Google Scholar 

  30. Wu J, E-El M (1996) Current–mode ladder filters using multiple output current conveyors. IEE Proc Circ Devices Syst 143:218–222

    Article  MATH  Google Scholar 

  31. Payne A, Toumazou C (1996) Analog amplifiers: classification and generalization. IEEE Trans Circ Syst-I 43:43–50

    Article  Google Scholar 

  32. Elwan HO, Soliman AM (1997) Novel CMOS differential voltage current conveyor and its applications. IEE Proc Circ Devices Syst 144:195–200

    Article  Google Scholar 

  33. Toumazou C, Barry G (1997) Intuitive analogue circuit design. Electron Commun Eng J 231–239

    Google Scholar 

  34. Cabeza R, Carlosena A, Arbel A (1997) Use of a CCII—as a universal building block. Microelectron J 28:543–550

    Article  Google Scholar 

  35. Soliman AM (1998) Generalized voltage and current conveyors: practical realizations using CCII. IEICE Trans Fundament Electron Commun Comput Sci E81-A:973–975

    Google Scholar 

  36. Alami M (1999) Second generation current conveyors with enhanced input resistance. Int J Electron 86:405–412

    Article  Google Scholar 

  37. Awad IA (1999) Inverting second generation current conveyors: the missing building blocks, CMOS realizations and applications. Int J Electron 86:413–432

    Article  Google Scholar 

  38. Ridley R (2000) Current mode or voltage mode? Switching Power Mag 5:4–9

    Google Scholar 

  39. Schmid H (2000) Approximating the universal active element. IEEE Trans Circ Syst-II 47:1160–1169

    Article  Google Scholar 

  40. Biolek D, Vrba K, Cajka J, Dostal T (2000) General three-port current conveyor: a useful tool for network design. J Electr Eng 51:36–39

    Google Scholar 

  41. El-Adawy AA, Soliman AM, Elwan HO (2000) A novel fully differential current conveyor and applications for analog VLSI. IEEE Trans Circ Syst-II 47:306–313

    Article  Google Scholar 

  42. Becvar D, Vrba K, Zeman V, Musil V (2000) Novel universal active block: a universal current conveyor. ISCAS 3:471–474

    Google Scholar 

  43. Beevao D, Vrba K (2000) Novel generations of inverting current conveyor using universal current conveyor. Electron J Eng Tech 3:4

    Google Scholar 

  44. Gilbert B (2001) Analog at milepost 2000: a personal perspective. Proc IEEE 89:289–304

    Article  Google Scholar 

  45. Takagi S (2001) Analog circuit designs in the last decade and their trends toward the 21st century. IEICE Trans Fundament E84-A:68–79

    Google Scholar 

  46. Gupta SS, Senani R (2001) Comment on ‘CMOS differential difference current conveyors and their applications’. IEE Proc Circ Devices Syst 148:335–336

    Article  Google Scholar 

  47. Arbel AF (2002) Review of research on ASP by the author. IEEE Circ Syst-II 49:599–611

    Article  Google Scholar 

  48. Mangelsdorf CW (2002) The changing face of analog IC design. IEICE Trans Fundament E85-A:282–285

    Google Scholar 

  49. Sato T, Wada K, Takagi S, Fujii N (2002) Extension of current conveyor concepts and its applications. IEICE Trans Fundament E85-A:414–421

    Google Scholar 

  50. Kuntman H, Cicekoglu O, Ozoguz S (2002) A modified third generation current conveyor, its characterization and applications. Frequenz 56:47–54

    Article  Google Scholar 

  51. Zeki A, Toker A (2003) The dual-X current conveyor (DXCCII): a new active device for tunable continuous-time filters. Int J Electron 89:913–923

    Article  Google Scholar 

  52. Schmid H (2003) Why ‘Current Mode’ does not guarantee good performance. Analog Integr Circ Sig Process 35:79–90

    Article  Google Scholar 

  53. Alzaher HA, Elwan H, Ismail M (2003) A CMOS fully balanced second-generation current conveyors. IEEE Trans Circ Syst-II 50:278–287

    Article  Google Scholar 

  54. Biolek D, Gubek T, Brno UFV (2004) New circuit elements for current-mode signal processing. Elektrorevue 28:12

    Google Scholar 

  55. Vidal E, Alarcon E, Gilbert B (2004) Up-to-date bibliography of current-mode design. Analog Integr Circ Sig Process 38:245–262

    Article  Google Scholar 

  56. Cajka J, Dostal T, Vrba K (2004) General view on current conveyors. Int J Circ Theor Appl 32:133–138

    Article  Google Scholar 

  57. Gilbert B (2004) Current mode, voltage mode or free mode? A few sage suggestions. Analog Integr Circ Sig Process 38:83–101

    Article  Google Scholar 

  58. Cajka J, Vrba K (2004) The voltage conveyor may have in fact found its way into circuit theory. Int J Electron Commun 58:244–248

    Article  Google Scholar 

  59. Gift SJG (2005) The operational conveyor and its application in an accurate current amplifier with gain-independent bandwidth. Int J Electron 92:33–47

    Article  Google Scholar 

  60. Soliman AM (2008) The inverting second generation current conveyors as universal building blocks. Int J Electron Commun 62:114–121

    Article  Google Scholar 

  61. Biolek D, Senani R, Biolkova V, Kolka Z (2008) Active elements for analog signal processing: classification, review, and new proposals. Radioengineering 17:15–32

    Google Scholar 

  62. Horng JW, Hou CL, Chang CM (2008) Multi-input differential current conveyor, CMOS realisation and application. IET Circ Devices Syst 2:469–475

    Article  Google Scholar 

  63. Horng YS, Liu WH, Tu SH, Chen JJ (2009) New building block: multiplication-mode current conveyor. IET Circ Devices Syst 3:41–48

    Article  Google Scholar 

  64. Siripruchyanun M, Silapan P, Jaikla W (2009) Realization of CMOS current controlled current conveyor transconductance amplifier (CCCCTA) and its applications. J Active Passive Electron Devices 4:35–53

    Google Scholar 

  65. Sobhy E, Soliman AM (2009) Novel CMOS realization of balanced-output third generation inverting current conveyor with applications. Circ Syst Sig Process 28:1037–1051

    Article  MATH  Google Scholar 

  66. De Marcellis A, Ferri G, Guerrini NC, Scotti G, Stornelli V, Trifiletti A (2009) The VCG-CCII: a novel building block and its application to capacitance multiplication. Analog Integr Circ Sig Process 58:55–59

    Article  Google Scholar 

  67. Chunhua W, Yang L, Qiujing Z, Yu F (2010) Systematic design of fully balanced differential current-mode multiple-loop feedback filters using CFBCCII. Radioengineering 19:185–193

    Google Scholar 

  68. Metin B, Herencsar N, Vrba K (2012) A CMOS DCCII with grounded capacitor based cascadable all-pass filter application. Radioengineering 21:718–724

    Google Scholar 

  69. Abdalla KK, Bhaskar DR, Senani R (2012) A review of the evolution of the current-mode circuits and techniques and various modern analog circuit building blocks. Nat Sci 10:1–13

    Google Scholar 

  70. Pandey N, Kumar P, Choudhary J (2013) Current controlled differential difference current conveyor transconductance amplifier and its application as wave active filter. ISRN Electron Article ID 968749:11

    Google Scholar 

  71. Chong CP, Smith KC (1986) Biquadratic filter sections employing a single current conveyor. Electron Lett 22:1162

    Article  Google Scholar 

  72. Rathore TS (1976) Analogue computations using current conveyors. J Inst Electron Telecom Engr 22:510–511

    Google Scholar 

  73. Kuntman HH (2011) New advances and possibilities provided by alternative active elements in analogue circuit design. Elektrik-Elektronik ve Bilgisayar Sempozyumu 1:1–12

    Google Scholar 

  74. Chua LO (1967) The rotator- a new network component. Proc IEEE 55:1566–1577

    Article  Google Scholar 

  75. Chua LO (1968) Synthesis of new non-linear network elements. Proc IEEE 56:1325–1340

    Article  Google Scholar 

  76. Mahmoud SA, Hashiesh MA, Soliman AM (2005) Low-voltage digitally controlled fully differential current conveyor. IEEE Trans Circ Syst-I 52:2055–2064

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Senani, R., Bhaskar, D.R., Singh, A.K. (2015). The Evolution and the History of Current Conveyors . In: Current Conveyors. Springer, Cham. https://doi.org/10.1007/978-3-319-08684-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08684-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08683-5

  • Online ISBN: 978-3-319-08684-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics