Skip to main content

Stochastic Modeling of Excitable Dynamics: Improved Langevin Model for Mesoscopic Channel Noise

  • Conference paper

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 438))

Abstract

Influence of mesoscopic channel noise on excitable dynamics of living cells became a hot subject within the last decade, and the traditional biophysical models of neuronal dynamics such as Hodgkin-Huxley model have been generalized to incorporate such effects. There still exists but a controversy on how to do it in a proper and computationally efficient way. Here we introduce an improved Langevin description of stochastic Hodgkin-Huxley dynamics with natural boundary conditions for gating variables. It consistently describes the channel noise variance in a good agreement with discrete state model. Moreover, we show by comparison with our improved Langevin model that two earlier Langevin models by Fox and Lu also work excellently starting from several hundreds of ion channels upon imposing numerically reflecting boundary conditions for gating variables.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Google Scholar 

  2. Koch, C.: Biophysics of Computation, Information Processing in Single Neurons. Oxford University Press, Oxford (1999)

    Google Scholar 

  3. Ochab-Marcinek, A., Schmid, G., Goychuk, I., Hänggi, P.: Noise-assisted spike propagation in myelinated neurons. Phys. Rev. E 79, 011904 (2009)

    Google Scholar 

  4. Strassberg, A.F., DeFelice, L.J.: Limitations of the Hodgkin-Huxley formalism: Effects of single channel kinetics on transmembrane voltage dynamics. Neuronal Computation 5, 843–855 (1993)

    Article  Google Scholar 

  5. Fox, R.F., Lu, Y.: Emergent collective behavior in large numbers of globally coupled independently stochastic ion channels. Phys. Rev. E 49, 3421–3431 (1994)

    Article  Google Scholar 

  6. Van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. North Holland, Amsterdam (1981)

    Google Scholar 

  7. Hänggi, P., Thomas, H.: Stochastic processes: Time evolution, symmetries, and linear response. Phys. Rep. 88, 207–319 (1982)

    Article  MathSciNet  Google Scholar 

  8. Gard, T.C.: Introduction to Stochastic Differential Equations. Marcel Dekker, New York (1988)

    Google Scholar 

  9. Schmid, G., Goychuk, I., Hänggi, P.: Stochastic resonance as a collective property of ion channel assemblies. Europhys. Lett. 56, 22–28 (2001)

    Article  Google Scholar 

  10. Schmid, G., Goychuk, I., Hänggi, P.: Effect of channel block on the spiking activity of excitable membranes in a stochastic Hodgkin-Huxley model. Phys. Biol. 1, 61–66 (2004)

    Article  Google Scholar 

  11. Schmid, G., Goychuk, I., Hänggi, P.: Capacitance fluctuations causing channel noise reduction in stochastic Hodgkin-Huxley systems. Phys. Biol. 3, 248–254 (2006)

    Article  Google Scholar 

  12. Schmid, G., Goychuk, I., Hänggi, P., Zeng, S., Jung, P.: Stochastic resonance and optimal clustering for assemblies of ion channels. Fluct. Noise Lett. 4, L33–L42 (2004)

    Google Scholar 

  13. Hänggi, P., Grabert, H., Talkner, P., Thomas, H.: Bistable systems: Master equation versus Fokker-Planck modeling. Phys. Rev. A 29, 371–378 (1984)

    Article  MathSciNet  Google Scholar 

  14. Ermentrout, B.: Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students. SIAM (2002)

    Google Scholar 

  15. Pikovsky, A.S., Kurths, J.: Coherence resonance in a noise-driven excitable system. Phys. Rev. Lett. 78, 775–778 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  16. Jung, P., Shuai, J.W.: Optimal sizes of ion channel clusters. Europhys. Lett. 56, 29–35 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Goychuk, I. (2014). Stochastic Modeling of Excitable Dynamics: Improved Langevin Model for Mesoscopic Channel Noise. In: Mladenov, V.M., Ivanov, P.C. (eds) Nonlinear Dynamics of Electronic Systems. NDES 2014. Communications in Computer and Information Science, vol 438. Springer, Cham. https://doi.org/10.1007/978-3-319-08672-9_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08672-9_38

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08671-2

  • Online ISBN: 978-3-319-08672-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics