Skip to main content

Unfolding the Threshold Switching Behavior of a Memristor

  • Conference paper
Nonlinear Dynamics of Electronic Systems (NDES 2014)

Abstract

Employing a mathematical model based upon Chua’s unfolding theorem, some aspects of the nonlinear dynamics of a thermally-activated micro-scale NbO x /Nb 2 O 5 volatile memristor were modeled. Insights into the peculiar behavior of the device are gained through experiments and model-based simulations. Particularly, this enables us to reproduce its threshold switching behavior under quasi-static excitation, and to explain under which conditions the off-to-on switching is accompanied by the appearance of a negative differential resistance region on its current-voltage characteristic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pickett, M.D., Williams, R.S.: Sub-100 fJ and sub-nanosecond thermally driven threshold switching in niobium oxide crosspoint nanodevices. Nanotechnology 23(21), 215202(9pp) (2012)

    Google Scholar 

  2. Mähne, H., Wylezich, H., Slesazeck, S., Mikolajick, T., Vesely, J., Klemm, V., Rafaja, D., Room temperature fabricated NbO x /Nb 2 O 5 memory switching device with threshold switching effect. In: Proc. 5th IEEE Int. Memory Workshop (IMW), pp. 174–177 (2013)

    Google Scholar 

  3. Pickett, M.D., Medeiros-Ribeiro, G., Williams, R.S.: A scalable neuristor built with Mott memristors. Nature Materials 12(2), 114–117 (2012)

    Article  Google Scholar 

  4. Ascoli, A., Corinto, F., Senger, V., Tetzlaff, R.: Memristor model comparison. IEEE Circuits and Systems Magazine 13(2), 89–105 (2013), doi:10.1109/MCAS.2013.2256272

    Article  Google Scholar 

  5. Corinto, F., Ascoli, A.: A boundary condition-based approach to the modeling of memristor nanostructures. IEEE Trans. on Circuits and Systems–I 59(11), 2713–2726 (2012)

    Article  MathSciNet  Google Scholar 

  6. Corinto, F., Ascoli, A., Gilli, M.: Memristor models for pattern recognition systems. In: Kozma, R., Pino, R., Pazienza, G. (eds.) Advances in Neuromorphic Memristor Science and Applications. Springer Series in Cognitive and Neural Systems, vol. 4, part 3, pp. 245–268. Springer (2012)

    Google Scholar 

  7. Corinto, F., Ascoli, A., Gilli, M.: Nonlinear dynamics of Memristor Oscillators. IEEE Trans. Circuits Syst.–I 58(6), 1323–1336 (2011), doi:10.1109/TCSI.2010.2097731 ISSN: 1549-8328

    Google Scholar 

  8. Corinto, F., Ascoli, A., Gilli, M.: Analysis of current-voltage characteristics for memristive elements in pattern recognition systems. Int. J. Circuit Theory Appl. 40(12), 1277–1320 (2012), doi:10.1002/cta.1804

    Article  Google Scholar 

  9. Mähne, H., Berger, L., Martin, D., Klemm, V., Slesazeck, S., Jakschik, S., Rafaja, D., Mikolajick, T.: Filamentary resistive switching in amorphous and polycrystalline Nb 2 O 5 thin films. Solid-State Electronics 72, 73–77 (2012)

    Article  Google Scholar 

  10. Ascoli, A., Schmidt, T., Tetzlaff, R., Corinto, F.: Application of the Volterra Series paradigm to memristive systems. In: Tetzlaff, R. (ed.) Memristors and Memristive Systems, ch. 5, pp. 163–191. Springer, New York (2014) ISBN: 978-1-4614-9067-8

    Google Scholar 

  11. Chua, L.O., Kang, S.-M.: Memristive devices and systems. Proc. IEEE 64(2), 209–223 (1976)

    Article  MathSciNet  Google Scholar 

  12. Pickett, M.D., Williams, R.S.: Phase transitions enable computational universality in neuristor-based cellular automata. Nanotechnology 24(38), 384002(7pp), (2013)

    Google Scholar 

  13. Kim, S., Lee, W., Hwang, H.: Selector devices for cross-point ReRAM. In: Proc. IEEE Int. Workshop on Cellular Nanoscale Networks and their Applications (CNNA), Turin, Italy (2012)

    Google Scholar 

  14. Chua, L.O.: Local activity is the origin of complexity. Int. J. on Bifurcation and Chaos 15(11), 3435–3456 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Chua, L.O.: CNN: A paradigm for complexity. Word Scientific Series on Nonlinear Science, Series Editor: L. O. Chua. Word Scientific Publishing Co. Pte. Ltd. (1998) ISBN: 981-02-3483-X

    Google Scholar 

  16. Ascoli, A., Corinto, F.: Memristor models in chaotic neural circuits. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, World Scientific 23(3), 1350052(28) (2013) ISSN: 0218-1274

    Google Scholar 

  17. Chua, L.O.: Resistance switching memories are memristors. Appl. Phys. A 102, 765–783 (2011)

    Article  Google Scholar 

  18. Chua, L.O.: Memristor: The missing circuit element. IEEE Trans. on Circuit Theory 18(5), 507–519 (1971)

    Article  Google Scholar 

  19. Ascoli, A., Senger, V., Tetzlaff, R., Corinto, F.: A novel memristor polynomial model. In: Proc. of Nonlinear Dynamics of Electronic Systems, Bari, Italy (2013)

    Google Scholar 

  20. Pickett, M.D., Strukov, D.B., Borghetti, J.L., Yang, J.J., Snider, G.S., Stewart, D.R., Williams, R.S.: Switching dynamics in titanium dioxide memristive devices. Journal of Applied Physics 106, 074508(1)–074508(6) (2009)

    Google Scholar 

  21. Mähne, H., Slesazeck, S., Jakschick, S., Dirnstorfer, I., Mikolajick, T.: The influence of crystallinity on the resistive switching behavior of TiO 2. Microelectronic Engineering 88, 1148–1151 (2011)

    Article  Google Scholar 

  22. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453, 80–83 (2008)

    Article  Google Scholar 

  23. Chua, L.O.: The Fourth Element. Proc. of the IEEE 100(6), 1920–1927 (2012)

    Article  Google Scholar 

  24. Corinto, F., Ascoli, A.: Memristive diode bridge with LCR filter. IEEE IET Electronics Letters 48(14), 824–825 (2012), doi:10.1049/el.2012.1480

    Article  Google Scholar 

  25. Strogatz, S.H.: Nonlinear dynamics and chaos: With applications to physics, biology, chemistry, and engineering. Westview Press, Perseus Books Publishing Group (1994) ISBN-13: 978-0-7382-0453-6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Slesazeck, S., Ascoli, A., Mähne, H., Tetzlaff, R., Mikolajick, T. (2014). Unfolding the Threshold Switching Behavior of a Memristor. In: Mladenov, V.M., Ivanov, P.C. (eds) Nonlinear Dynamics of Electronic Systems. NDES 2014. Communications in Computer and Information Science, vol 438. Springer, Cham. https://doi.org/10.1007/978-3-319-08672-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08672-9_20

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08671-2

  • Online ISBN: 978-3-319-08672-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics