Implementation of an Adaptive Training and Tracking Game in Statistics Teaching

  • Caspar M. Groeneveld
Part of the Communications in Computer and Information Science book series (CCIS, volume 439)


Statistics teaching in higher education has a number of challenges. An adaptive training, tracking and teaching tool in a gaming environment aims to address problems inherent in statistics teaching. This paper discusses the implementation of this tool in a large first year university programme and considers its uses and effects. It finds that such a tool has students practice with statistics problems frequently and that success rate of the statistics course may increase.


adaptive testing computer adaptive testing CAT digital testing formative testing statistics teaching serious gaming game based learning learning analytics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blackwell, L.S., Trzesniewski, K.H., Dweck, C.S.: Implicit Theories of Intelligence Predict Achievement Across an Adolescent Transition: A Longitudinal Study and an Intervention. Child Development 78(1), 246–263 (2007), doi:10.1111/j.1467-8624.2007.00995.xCrossRefGoogle Scholar
  2. 2.
    Dutilh, G., Wagenmakers, E.-J., Visser, I., Van der Maas, H.L.J.: A Phase Transition Model for the Speed-Accuracy Trade-Off in Response Time Experiments. Cognitive Science 35(2), 211–250 (2011), doi:10.1111/j.1551-6709.2010.01147.xCrossRefGoogle Scholar
  3. 3.
    Dweck, C.S.: Mindsets and Math/Science Achievement. Carnegie Corporation of New York, Institute for Advanced Study, Commission on Mathematics and Science Education, New York (2008), (retrieved March 23, 2014)
  4. 4.
    Garfield, J.: How Students Learn Statistics. International Statistical Review 63(1), 25–34 (1995), doi:10.2307/1403775CrossRefGoogle Scholar
  5. 5.
    Glynn, S.M., Aultman, L.P., Owens, A.M.: Motivation to Learn in General Education Programs. The Journal of General Education 52(2), 150–170 (2005), doi:10.1353/jge.2005.0021CrossRefGoogle Scholar
  6. 6.
    Karpicke, J.D., Blunt, J.R.: Retrieval Practice Produces More Learning than Elaborative Studying with Concept Mapping. Science 331(6018), 772–775 (2011), doi:10.1126/science.1199327CrossRefGoogle Scholar
  7. 7.
    Klinkenberg, S., Straatemeier, M., Van der Maas, H.L.J.: Computer Adaptive Practice of Maths Ability Using a New Item Response Model for on the Fly Ability and Difficulty Estimation. Computers and Education 58(2), 1813–1824 (2011), doi:10.1016/j.compedu.2011.02.003CrossRefGoogle Scholar
  8. 8.
    Zimmerman, B.J.: Self-Efficacy: An Essential Motive to Learn. Contemporary Educational Psychology 25(1), 82–91 (2000), doi:10.1006/ceps.1999.1016CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Caspar M. Groeneveld
    • 1
  1. 1.Department of PsychologyUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations