Skip to main content

Matching of 3D Objects Based on 3D Curves

  • Chapter
  • First Online:
  • 4359 Accesses

Part of the book series: Advances in Computer Vision and Pattern Recognition ((ACVPR))

Abstract

In this chapter, we introduce a novel approach to 3D object retrieval capable to match query objects generated by a user with those captured by a depth device (RGB-D). Our processing pipeline consists of several steps. In the preprocessing step, we first detect edges in the depth image and merge them to 2D object curves which allows a back-projection to 3D space. Then, we estimate a local coordinate system for these 3D curves. In the next step, distinctive feature points are localised and shortest paths between these points are determined. Subsequently, the shortest paths are represented by robust descriptors invariant to rotation, scaling, and translation. Finally, all the information collected to describe the object is used for matching. The matching process is transformed to the problem of Maximum Weight Subgraph search. Excellent retrieval results achieved in a comprehensive setup of challenging experiments show the benefits of our method comparing to the state-of-the-art.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bai X, Latecki LJ (2008) Path similarity skeleton graph matching. IEEE PAMI 30(7):1282–1292

    Article  Google Scholar 

  2. Bariya P, Nishino K (2010) Scale-hierarchical 3D object recognition in cluttered scenes. In: CVPR, p 1657–1664

    Google Scholar 

  3. Bo L, Lai K, Ren X, Fox D (2011) Object recognition with hierarchical Kernel descriptors. In: CVPR, p 1729–1736

    Google Scholar 

  4. Bo L, Ren X., Fox D (2011) Depth kernel descriptors for object recognition. In: 2011 IEEE international conference on robotics and automation (ICRA), IEEE, pp 821–826

    Google Scholar 

  5. Bo L, Ren X, Fox D (2012) Unsupervised feature learning for RGB-D based object recognition. In: International symposium on experimental robotics (ISER), Springer, pp 387–402

    Google Scholar 

  6. Campbell RJ, Flynn PJ (2001) A survey of free-form object representation and recognition techniques. Comput Vis Image Underst 81(2):166–210

    Article  MATH  Google Scholar 

  7. Chen H, Bhanu B (2007) 3D free-form object recognition in range images using local surface patches. Pattern Recogn Lett 28(10):1252–1262

    Article  Google Scholar 

  8. Drost B, Ulrich M, Navab N, Ilic S (2010) Model globally, match locally: efficient and robust 3D object recognition. In: CVPR, p 998–1005

    Google Scholar 

  9. Everingham M, Gool L, Williams CK, Winn J, Zisserman A (2010) The pascal visual object classes (VOC) challenge. Int J Comput Vis 88(2):303–338

    Article  Google Scholar 

  10. Felzenszwalb P, Girshick R, McAllester D, Ramanan D (2010) Object detection with discriminatively trained part-based models. IEEE Trans Pattern Anal Machine Intell 32(9):1627–1645

    Google Scholar 

  11. Ferrari V, Jurie F, Schmid C (2010) From images to shape models for object detection. Int J Computer Vis 87(3):284–303

    Google Scholar 

  12. Grzegorzek M, Sav S, Izquierdo E, O’Connor NE (2010) Local wavelet features for statistical object classification and localisation. IEEE Multimedia 17(1):56–66

    Article  Google Scholar 

  13. Han J, Shao L, Xu D, Shotton J (2013) Enhanced computer vision with microsoft kinect sensor: a review. Cybern IEEE Trans 43(5):1318–1334

    Article  Google Scholar 

  14. Janoch A, Karayev S, Jia Y, Barron J, Fritz M, Saenko K, Darrell T (2011) A categorylevel 3-d object dataset: putting the kinect to work. In: Computer vision workshops (ICCV workshops), 2011 IEEE International Conference on, pp 1168–1174

    Google Scholar 

  15. Johnson AE, Hebert MH (1999) Using spin images for efficient object recognition in cluttered 3D scenes. PAMI 21(5):433–449

    Article  Google Scholar 

  16. Lai K, Bo L, Ren X, Fox D (2011) A large-scale hierarchical multi-view RGB-D object dataset. In: 2011 IEEE international conference on robotics and automation (ICRA), IEEE, pp 1817–1824

    Google Scholar 

  17. Lai K, Bo L, Ren X, Fox D (2011) Sparse distance learning for object recognition combining RGB and depth information. In: 2011 IEEE international conference on robotics and automation (ICRA), pp 4007–4013

    Google Scholar 

  18. Latecki LJ, Wang Q, Koknar-Tezel S, Megalooikonomou V (2007) Optimal subsequence bijection. In: International conference on data mining (ICDM), pp 565–570

    Google Scholar 

  19. Li C, Shirahama K, Grzegorzek M, Ma F, Zhou B (2013) Classification of environmental microorganisms in microscopic images using shape features and support vector machines. In: IEEE international conference on image processing. IEEE computer society, Melbourne, Australia, pp 2435–2439

    Google Scholar 

  20. Li X, Guskov I (2007) 3D object recognition from range images using pyramid matching. In: ICCV, pp 1–6

    Google Scholar 

  21. Ma T, Latecki LJ (2012) Maximum weight cliques with mutex constraints for video object segmentation. In: CVPR, pp 670–677

    Google Scholar 

  22. Ma T, Yi M, Latecki LJ (2013) View-invariant object detection by matching 3D contours. In: Park JI, Kim J (eds) ACCV workshops, lecture notes in computer science, vol 7729, Springer, Berlin, Heidelberg, pp 183–196

    Google Scholar 

  23. Mian A, Bennamoun M, Owens R (2006) Three-dimensional model-based object recognition and segmentation in cluttered scenes. PAMI 28(10):1584–1601

    Article  Google Scholar 

  24. Nguyen TB, Sukhan L (2009) Accurate 3D lines detection using stereo camera. In: International symposium on assembly and manufacturing (ISAM), pp 304–309

    Google Scholar 

  25. Payet N, Todorovic S (2011) From contours to 3D object detection and pose estimation. In: ICCV, pp. 983–990

    Google Scholar 

  26. Redondo-Cabrera C, Lopez-Sastre R, Acevedo-Rodriguez J, Maldonado-Bascon S (2012) Surfing the point clouds: selective 3D spatial pyramids for category-level object recognition. In: CVPR, pp 3458–3465

    Google Scholar 

  27. Reinhold M, Grzegorzek M, Denzler J, Niemann H (2005) Appearance-based recognition of 3-D objects by cluttered background and occlusions. Pattern Recogn 38(5):739–753

    Article  Google Scholar 

  28. Spinello L, Arras KO (2012) Leveraging RGB-D data: adaptive fusion and domain adaptation for object detection. In: 2012 IEEE International Conference on robotics and automation (ICRA), pp 4469–4474

    Google Scholar 

  29. Stiene S, Lingemann K, Nuchter A, Hertzberg J (2006) Contour-based object detection in range images. In: International symposium on 3D data processing, visualization, and transmission, pp 168–175

    Google Scholar 

  30. Tang S, Wang X, Lv X, Han TX, Keller J, He Z, Skubic M, Lao S (2013) Histogram of oriented normal vectors for object recognition with a depth sensor. In: Proceedings of the 11th Asian conference on computer vision ACCV’12, volume part II, Springer-Verlag, Berlin, Heidelberg, pp 525–538

    Google Scholar 

  31. Yi M, Yang Y, Qi W, Zhou Y, Li Y, Pizlo Z, Latecki LJ (2013) Navigation toward non-static target object using footprint detection based tracking. In: Proceedings of the 11th ACCV, Springer, pp 389–400

    Google Scholar 

Download references

Acknowledgments

We would like to thank the German Research Foundation for financing the research work of Christian Feinen and Joanna Czajkowska within the Research Training Group 1564 “Imaging New Modalities”: http://www.grk1564.uni-siegen.de/en.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Grzegorzek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Feinen, C., Czajkowska, J., Grzegorzek, M., Latecki, L.J. (2014). Matching of 3D Objects Based on 3D Curves. In: Shao, L., Han, J., Kohli, P., Zhang, Z. (eds) Computer Vision and Machine Learning with RGB-D Sensors. Advances in Computer Vision and Pattern Recognition. Springer, Cham. https://doi.org/10.1007/978-3-319-08651-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08651-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08650-7

  • Online ISBN: 978-3-319-08651-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics