Advertisement

Improving the β-Precision and OWA Based Fuzzy Rough Set Models: Definitions, Properties and Robustness Analysis

  • Lynn D’eer
  • Nele Verbiest
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8536)

Abstract

Since the early 1990s, many authors have studied fuzzy rough set models and their application in machine learning and data reduction. In this work, we adjust the β-precision and the ordered weighted average based fuzzy rough set models in such a way that the number of theoretical properties increases. Furthermore, we evaluate the robustness of the new models a-β-PREC and a-OWA to noisy data and compare them to a general implicator-conjunctor-based fuzzy rough set model.

Keywords

fuzzy sets rough sets hybridization lower and upper approximation implication conjunction beta-precision OWA robustness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pawlak, Z.: Rough sets. International Journal of Computer and Information Sciences 11(5), 341–356 (1982)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Zadeh, L.: Fuzzy sets. Information and Control 8, 338–353 (1965)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Dubois, D., Prade, H.: Rough fuzzy sets and fuzzy rough sets. International Journal of General Systems 17, 191–209 (1990)CrossRefMATHGoogle Scholar
  4. 4.
    D’eer, L., Verbiest, N., Cornelis, C., Godo, L.: Implicator-conjunctor based models of fuzzy rough sets: definitions and properties. In: Ciucci, D., Inuiguchi, M., Yao, Y., Ślęzak, D., Wang, G. (eds.) RSFDGrC 2013. LNCS, vol. 8170, pp. 169–179. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  5. 5.
    Fernández Salido, J., Murakami, S.: On β-precision aggregation. Fuzzy Sets and Systems 139, 547–558 (2003)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Fernández Salido, J., Murakami, S.: Rough set analysis of a general type of fuzzy data using transitive aggregations of fuzzy similarity relations. Fuzzy Sets and Systems 139, 635–660 (2003)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Cornelis, C., Verbiest, N., Jensen, R.: Ordered weighted average based fuzzy rough sets. In: Yu, J., Greco, S., Lingras, P., Wang, G., Skowron, A. (eds.) RSKT 2010. LNCS, vol. 6401, pp. 78–85. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Cornelis, C., Jensen, R., Hurtado Martín, G., Slezak, D.: Attribute selection with fuzzy decision reducts. Information Sciences 180(2), 209–224 (2010)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Inuiguchi, M.: Classification- versus approximation-oriented fuzzy rough sets. In: Bouchon-Meunier, B., Coletti, G., Yager, R. (eds.) Proceedings of Information Processing and Management of Uncertainty in Knowledge-Based Systems. CD-ROM (2004)Google Scholar
  10. 10.
    Mieszkowicz-Rolka, A., Rolka, L.: Fuzzy rough approximations of process data. International Journal of Approximate Reasoning 49, 301–315 (2008)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Hu, Q., An, S., Yu, X., Yu, D.: Robust fuzzy rough classifiers. Fuzzy Sets and Systems 183, 26–43 (2011)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Yao, Y., Mi, J., Li, Z.: A novel variable precision (θ, σ)-fuzzy rough set model based on fuzzy granules. Fuzzy Sets and Systems 236, 58–72 (2014)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Cornelis, C., De Cock, M., Radzikowska, A.: Vaguely quantified rough sets. In: An, A., Stefanowski, J., Ramanna, S., Butz, C.J., Pedrycz, W., Wang, G. (eds.) RSFDGrC 2007. LNCS (LNAI), vol. 4482, pp. 87–94. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Zhao, S., Tsang, E., Chen, D.: The model of fuzzy variable precision rough sets. IEEE 17(2), 451–467 (2009)Google Scholar
  15. 15.
    D’eer, L., Verbiest, N., Cornelis, C., Godo, L.: Modelos de conjuntos rugosos difusos tolerantes al ruido: definiciones y propiedades. In: Proceedings of XVII Congreso Español sobre Tecnologías y Lógica Fuzzy (ESTYLF 2014), pp. 27–32 (2014)Google Scholar
  16. 16.
    Yager, R.: On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Transactions on Systems, Man and Cybernetics 18, 183–190 (1988)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Verbiest, N., Cornelis, C., Herrera, F.: FRPS: a fuzzy rough prototype selection method. Pattern Recognition 46(10), 2770–2782 (2013)CrossRefGoogle Scholar
  18. 18.
    Verbiest, N., Cornelis, C., Jensen, R.: Quality, frequency and similarity based fuzzy nearest neighbor classification. In: Proceedings of the IEEE International Conference on Fuzzy Systems (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Lynn D’eer
    • 1
  • Nele Verbiest
    • 1
  1. 1.Department of Applied Mathematics, Computer Science and StatisticsGhent UniversityGentBelgium

Personalised recommendations