Feature Selection Based on Confirmation-Theoretic Rough Sets

  • Bing Zhou
  • Yiyu Yao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8536)

Abstract

As an important part of data preprocessing in machine learning and data mining, feature selection, also known as attribute reduction in rough set theory, is the process of choosing the most informative subset of features. Rough set theory has been used as such a tool with much success. The main objective of this paper is to propose a feature selection procedure based on a special group of probabilistic rough set models, called confirmation-theoretic rough set model(CTRS). Different from the existing attribute reduction methods, the definition of positive features is based on Bayesian confirmation measures. The proposed method is further divided into two categories based on the qualitative and quantitative nature of the underlying rough set models. This study provides new insights into the problem of attribute reduction.

Keywords

feature selection attribute reduction probabilistic rough set confirmation-theoretic rough set 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bayes, T., Price, R.: An essay towards solving a problem in the doctrine of chance. By the late Rev. Mr. Bayes, communicated by Mr. Price, in a letter to John Canton, M. A. and F. R. S. Philosophical Transactions of the Royal Society of London 53, 370–418 (1763)Google Scholar
  2. 2.
    Festa, R.: Bayesian Confirmation. In: Galavotti, M., Pagnini, A. (eds.) Experience, Reality, and Scientific Explanation, pp. 55–87. Kluwer Academic Publishers, Dordrecht (1999)CrossRefGoogle Scholar
  3. 3.
    Greco, S., Pawlak, Z., Słowiński, R.: Bayesian confirmation measures within rough set approach. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 264–273. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Greco, S., Matarazzo, B., Słowiński, R.: Parameterized rough set model using rough membership and Bayesian confirmation measures. International Journal of Approximate Reasoning 49, 285–300 (2009)CrossRefGoogle Scholar
  5. 5.
    Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)Google Scholar
  6. 6.
    Pawlak, Z., Skowron, A.: Rough membership functions. In: Yager, R.R., Fedrizzi, M., Kacprzyk, J. (eds.) Advances in the Dempster-Shafer Theory of Evidence, pp. 251–271. John Wiley and Sons, New York (1994)Google Scholar
  7. 7.
    Pawlak, Z., Wong, S.K.M., Ziarko, W.: Rough sets: probabilistic versus deterministic approach. International Journal of Man-Machine Studies 29, 81–95 (1988)CrossRefMATHGoogle Scholar
  8. 8.
    Ślęzak, D.: Rough Sets and Bayes Factor. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets III. LNCS, vol. 3400, pp. 202–229. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Ślęzak, D., Ziarko, W.: Bayesian rough set model. In: Proceedings of FDM 2002, pp. 131–135 (2002)Google Scholar
  10. 10.
    Yao, Y.Y.: Decision-theoretic rough set models. In: Yao, J., Lingras, P., Wu, W.-Z., Szczuka, M.S., Cercone, N.J., Ślęzak, D. (eds.) RSKT 2007. LNCS (LNAI), vol. 4481, pp. 1–12. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Yao, Y.Y., Zhao, Y.: Attribute reduction in decision-theoretic rough set models. Information Sciences 178(17), 3356–3373 (2008)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Yao, Y.Y., Wong, S.K.M., Lingras, P.: A decision-theoretic rough set model. In: Ras, Z.W., Zemankova, M., Emrich, M.L. (eds.) Methodologies for Intelligent Systems 5, pp. 17–24. North-Holland, New York (1990)Google Scholar
  13. 13.
    Zhou, B., Yao, Y.Y.: Comparison of Two Models of Probabilistic Rough Sets. In: Lingras, P., Wolski, M., Cornelis, C., Mitra, S., Wasilewski, P. (eds.) RSKT 2013. LNCS, vol. 8171, pp. 121–132. Springer, Heidelberg (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Bing Zhou
    • 1
  • Yiyu Yao
    • 2
  1. 1.Department of Computer ScienceSam Houston State UniversityHuntsvilleUSA
  2. 2.Department of Computer ScienceUniversity of ReginaReginaCanada

Personalised recommendations