Multi-label Attribute Evaluation Based on Fuzzy Rough Sets

  • Lingjun Zhang
  • Qinghua Hu
  • Yucan Zhou
  • Xiaoxue Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8536)


In multi-label learning task, each sample may be assigned with one or more labels. Moreover multi-label classification tasks are often characterized by high-dimensional and inconsistent attributes. Fuzzy rough sets are an effective mathematic tool for dealing with inconsistency and attribute reduction. In this work, we discuss multi-label attribute reduction within the frame of fuzzy rough sets. We analyze the definitions of fuzzy lower approximation in multi-label classification and give several improvements of the traditional algorithms. Furthermore, the attribute dependency function is defined to evaluate condition attributes. A multi-label attribute reduction algorithm is constructed based on the dependency function. Numerical experiments show the effectiveness of the proposed technique.


Multi-label learning attribute evaluation fuzzy rough set attribute dependency 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ueda, N., Saito, K.: Parametric mixture models for multi-labeled text. In: Advances in Neural Information Processing Systems, pp. 737–744 (2003)Google Scholar
  2. 2.
    Yu, K., Yu, S., Tresp, V.: Multi-label informed latent semantic indexing. In: 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 258–265. ACM (2005)Google Scholar
  3. 3.
    Boutell, M.R., Luo, J., Shen, X., et al.: Learning multi-label scene classification. Pattern Recognition 37, 1757–1771 (2004)CrossRefGoogle Scholar
  4. 4.
    Pawlak, Z., Grzymala-Busse, J., Slowinski, R., et al.: Rough sets. Communications of the ACM 38, 88–95 (1995)CrossRefGoogle Scholar
  5. 5.
    Dubois, D., Prade, H.: Rough fuzzy sets and fuzzy rough sets. International Journal of General System 17, 191–209 (1990)CrossRefzbMATHGoogle Scholar
  6. 6.
    Morsi, N.N., Yakout, M.M.: Axiomatics for fuzzy rough sets. Fuzzy sets and Systems 100, 327–342 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Hu, Q., Yu, D., Xie, Z.: Information-preserving hybrid data reduction based on fuzzy-rough techniques. Pattern Recognition Letters 27, 414–423 (2006)CrossRefGoogle Scholar
  8. 8.
    Hu, Q., Xie, Z., Yu, D.: Hybrid attribute reduction based on a novel fuzzy-rough model and information granulation. Pattern Recognition 40, 3509–3521 (2007)CrossRefzbMATHGoogle Scholar
  9. 9.
    Jensen, R., Shen, Q.: Fuzzy-rough sets assisted attribute selection. IEEE Transactions on Fuzzy Systems 15, 73–89 (2007)CrossRefGoogle Scholar
  10. 10.
    Jensen, R., Shen, Q.: Semantics-preserving dimensionality reduction: rough and fuzzy-rough-based approaches. IEEE Transactions on Knowledge and Data Engineering 16, 1457–1471 (2004)CrossRefGoogle Scholar
  11. 11.
    Yeung, D.S., Chen, D., Tsang, E.C.C., et al.: On the generalization of fuzzy rough sets. IEEE Transactions on Fuzzy Systems 13, 343–361 (2005)CrossRefGoogle Scholar
  12. 12.
    Boutell, M.R., Luo, J., Shen, X., et al.: Learning multi-label scene classification. Pattern Recognition 37, 1757–1771 (2004)CrossRefGoogle Scholar
  13. 13.
    Tsoumakas, G., Vlahavas, I.P.: Random k-labelsets: An ensemble method for multilabel classification. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 406–417. Springer, Heidelberg (2007)Google Scholar
  14. 14.
    Zhang, Y., Zhou, Z.H.: Multilabel dimensionality reduction via dependence maximization. ACM Transactions on Knowledge Discovery from Data 14, 14–26 (2010)Google Scholar
  15. 15.
    Zhang, M.L., Zhou, Z.H.: ML-KNN: A lazy learning approach to multi-label learning. Pattern Recognition 40, 2038–2048 (2007)CrossRefzbMATHGoogle Scholar
  16. 16.
    Yu, Y., Pedrycz, W., Miao, D.: Multi-label classification by exploiting label correlations. Expert Systems with Applications 41, 2989–3004 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Lingjun Zhang
    • 1
  • Qinghua Hu
    • 1
  • Yucan Zhou
    • 1
  • Xiaoxue Wang
    • 1
  1. 1.School of Computer Science and TechnologyTianjin UniversityTianjinChina

Personalised recommendations