Advertisement

Orthopairs in the 1960s: Historical Remarks and New Ideas

  • Davide Ciucci
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8536)

Abstract

Before the advent of fuzzy and rough sets, some authors in the 1960s studied three-valued logics and pairs of sets with a meaning similar to those we can encounter nowadays in modern theories such as rough sets, decision theory and granular computing. We revise these studies using the modern terminology and making reference to the present literature. Finally, we put forward some future directions of investigation.

Keywords

Decision Theory Epistemic Logic Granular Computing Implication Lattice Historical Remark 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andreoli, G.: Struttura delle algebre di Boole e loro estensione quale calcolo delle classi. Giornale di Matematiche di Battaglini LXXXV, 141–171 (1957)Google Scholar
  2. 2.
    Andreoli, G.: Algebre di Boole - algebre di insieme - algebre di livelli. Giornale di Matematiche di Battaglini LXXXVII, 3–22 (1959)Google Scholar
  3. 3.
    Andreoli, G.: Dicotomie e tricotomie (anelli booleani triadici ed algebre booleane a tre valori). La Ricerca, pp. 1–10 (1961)Google Scholar
  4. 4.
    Banerjee, M., Chakraborty, K.: Algebras from rough sets. In: Pal, S., Skowron, A., Polkowski, L. (eds.) Rough-Neural Computing, pp. 157–188. Springer (2004)Google Scholar
  5. 5.
    Banerjee, M., Khan, M. A.: Propositional logics from rough set theory. In: Peters, J.F., Skowron, A., Düntsch, I., Grzymała-Busse, J.W., Orłowska, E., Polkowski, L. (eds.) Transactions on Rough Sets VI. LNCS, vol. 4374, pp. 1–25. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Belnap, N.D.: A useful four-valued logic. In: Dunn, J.M., Epstein, G. (eds.) Modern Uses of Multiple-Valued Logic, pp. 8–37. D. Reidel Publishing Company (1977)Google Scholar
  7. 7.
    Calegari, S., Ciucci, D.: Granular computing applied to ontologies. International Journal of Approximate Reasoning 51(4), 391–409 (2010)CrossRefMATHGoogle Scholar
  8. 8.
    Ciucci, D.: Orthopairs: A simple and widely used way to model uncertainty. Fundam. Inform. 108(3-4), 287–304 (2011)MathSciNetMATHGoogle Scholar
  9. 9.
    Ciucci, D., Dubois, D.: A modal theorem-preserving translation of a class of three-valued logics of incomplete information. Journal of Applied Non-Classical Logics 23(4), 321–352 (2013)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Ciucci, D., Dubois, D.: A map of dependencies among three-valued logics. Information Sciences 250, 162–177 (2013), Corrigendum: Information Sciences 256, 234–235 (2014)Google Scholar
  11. 11.
    Ciucci, D., Dubois, D., Lawry, J.: Borderline vs. unknown: a comparison between three-valued valuations, partial models, and possibility distributions. In: Proceedings of the Workshop Weighted Logics for AI at ECAI 2012, pp. 83–90 (2012), http://www2.lirmm.fr/ecai2012/images/stories/ecai_doc/pdf/workshop/W34_wl4ai-working-notes.pdf
  12. 12.
    Ciucci, D., Dubois, D., Prade, H.: Oppositions in rough set theory. In: Li, T., Nguyen, H.S., Wang, G., Grzymala-Busse, J., Janicki, R., Hassanien, A.E., Yu, H. (eds.) RSKT 2012. LNCS, vol. 7414, pp. 504–513. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Ciucci, D., Dubois, D.: Three-valued logics, uncertainty management and rough sets. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets XVII. LNCS, vol. 8375, pp. 1–32. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  14. 14.
    Ciucci, D., Dubois, D., Lawry, J.: Borderline vs. unknown - comparing three-valued representation of imperfect information. International Journal of Approximate Reasoning (2013) (submitted)Google Scholar
  15. 15.
    Dubois, D.: Reasoning about ignorance and contradiction: many-valued logics versus epistemic logic. Soft Comput. 16(11), 1817–1831 (2012)CrossRefMATHGoogle Scholar
  16. 16.
    Dubois, D., Prade, H.: Conditional objects as nonmonotonic consequence relationships. IEEE Transaction of Sysyems, Man, and Cybernetics 24(12), 1724–1740 (1994)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Dubois, D., Prade, H.: From Blanché’s hexagonal organization of concepts to formal concept analysis and possibility theory. Logica Universalis 6(1-2), 149–169 (2012)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Fadini, A.: Il calcolo delle classi in una logica a tre valori di verità. Giornale di Matematiche di Battaglini XC, 72–91 (1962)Google Scholar
  19. 19.
    Fadini, A.: Teoria degli elementi complessi nelle Algebre di Boole. Annali del Pontificio Istituto Superiore di Scienze e Lettere “S. Chiara” 12, 223–243 (1962)Google Scholar
  20. 20.
    Fadini, A.: Introduzione alla Teoria degli Insiemi Sfocati. Liguori Editore, Napoli (1979)Google Scholar
  21. 21.
    Gentilhomme, M.Y.: Les ensembles flous en linguistique. Cahiers de linguistique théorique et appliquée. Bucarest 47, 47–65 (1968)Google Scholar
  22. 22.
    Grabisch, M., Marichal, J.L., Mesiar, R., Pap, E.: Aggregation Functions. Cambridge University Press (2009)Google Scholar
  23. 23.
    Kleene, S.C.: Introduction to metamathematics. North–Holland Pub. Co., Amsterdam (1952)Google Scholar
  24. 24.
    Lawry, J., Dubois, D.: A bipolar framework for combining beliefs about vague propositions. In: Brewka, G., Eiter, T., McIlraith, S.A. (eds.) Principles of Knowledge Representation and Reasoning: Proceedings of the Thirteenth International Conference, pp. 530–540. AAAI Press (2012)Google Scholar
  25. 25.
    Lawry, J., Tang, Y.: On truth-gaps, bipolar belief and the assertability of vague propositions. Artif. Intell. 191-192, 20–41 (2012)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Nola, A.D., Gerla, G.: A three-valued doxastic logic. La Ricerca XXXII, 19–33 (1981)Google Scholar
  27. 27.
    Pagliani, P.: Information gaps as communication needs: A new semantic foundation for some non-classical logics. Journal of Logic, Language and Information 6(1), 63–99 (1997)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Pagliani, P., Chakraborty, M.: A Geometry of Approximation. Springer (2008)Google Scholar
  29. 29.
    Reichenbach, H.: Philosophic Foundations of Quantum Mechanics. University of California Press, Berkeley (1954)Google Scholar
  30. 30.
    Samanta, P., Chakraborty, M.K.: Generalized rough sets and implication lattices. In: Peters, J.F., Skowron, A., Sakai, H., Chakraborty, M.K., Slezak, D., Hassanien, A.E., Zhu, W. (eds.) Transactions on Rough Sets XIV. LNCS, vol. 6600, pp. 183–201. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  31. 31.
    Sobociński, B.: Axiomatization of a partial system of three-value calculus of propositions. J. of Computing Systems 1, 23–55 (1952)Google Scholar
  32. 32.
    Yao, Y.: Interval sets and interval-set algebras. In: Proceedings of the 8th IEEE International Conference on Cognitive Informatics, pp. 307–314 (2009)Google Scholar
  33. 33.
    Yao, Y.: An Outline of a Theory of Three-way Decisions. In: Yao, J., Yang, Y., Słowiński, R., Greco, S., Li, H., Mitra, S., Polkowski, L. (eds.) RSCTC 2012. LNCS, vol. 7413, pp. 1–17. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  34. 34.
    Yao, Y.: Granular computing and sequential three-way decisions. In: Lingras, P., Wolski, M., Cornelis, C., Mitra, S., Wasilewski, P. (eds.) RSKT 2013. LNCS, vol. 8171, pp. 16–27. Springer, Heidelberg (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Davide Ciucci
    • 1
  1. 1.Dipartimento di Informatica, Sistemistica e ComunicazioneUniversità di Milano – BicoccaMilanoItalia

Personalised recommendations