Skip to main content

Part of the book series: Hamburg Studies on Maritime Affairs ((HAMBURG,volume 31))

  • 980 Accesses

Abstract

This work comprises two models and a couple of data, which are described here. The models used are mesoscale models named HAMSOM and METRAS, which were used to simulate the ocean and the atmosphere. Data comprise forcing data for the simulations, as well as done measurements. Additionally, this chapter explains the model setups and the methodology used to analyze the impact of offshore wind turbines on the atmosphere and the ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arakawa A, Lamb VR (1977) Computational design of the basic dynamical processes of the UCLA general circulation model. Methods Comput Phys 17:173

    Google Scholar 

  • Backhaus J (1985) A three-dimensional model for the simulation of shelf sea dynamics. Ocean Dyn 38:165–187. doi:10.1007/BF02328975

    Google Scholar 

  • Backhaus J, Hainbucher D (1987) A finite difference general circulation model for shelf seas and its application to low frequency variability on the North European shelf. Elsevier Oceanography Series. Elsevier, Amsterdam, pp 221–244

    Google Scholar 

  • Becker G, Giese H, Isert K et al (1999) Mesoskalige Strukturen, Flüsse und Wassermassen-VariabilitÄt in der Deutschen Bucht, dargestellt durch die Kustos-Experimente und numerische Modelle. Deutsche Hydrographische Zeitschrift 51:155–179. doi:10.1007/BF02764173

    Article  Google Scholar 

  • Betz A (1926a) Windenergie und ihre Ausnutzung durch Windmühlen. Naturwissenschaften und Technik, Heft 2

    Google Scholar 

  • Betz A (1926b) Wirbelschichten und ihre Bedeutung für die Strömungsvorgänge. Naturwissenschaften 14:1228–1233. doi:10.1007/BF01451780

    Article  Google Scholar 

  • Boyer T, Levitus S, Garcia H (2005) Objective analyses of annual, seasonal, and monthly temperature and salinity for the World Ocean on a 0.25° grid. Int J Climatol 25:931–945. doi:10.1002/joc.1173

    Article  Google Scholar 

  • Broström G (2008) On the influence of large wind farms on the upper ocean circulation. J Mar Syst 74:585–591

    Article  Google Scholar 

  • BSH (2013) Meeresnutzung-Windparks. In: www.bsh.de. http://www.bsh.de/de/Meeresnutzung/Wirtschaft/Windparks/. Accessed 20 Nov 2013

  • Carbajal N (1993) Modelling of the circulation in the Gulf of California. Reports Centre of Marine Climate Research 1–186

    Google Scholar 

  • Damm P (1997) Die saisonale Salzgehalts- und Frischwasserverteilung in der Nordsee und ihre Bilanzierung. 259

    Google Scholar 

  • Dena (2013) Offshore-Windenergie. In: www.effiziente-energiesysteme.de. http://www.effiziente-energiesysteme.de/themen/erneuerbare-energien/offshore-windenergie/. Accessed 1 Dec 2013

  • Hainbucher D, Backhaus J (1999) Circulation of the eastern North Atlantic and north-west European continental shelf – a hydrodynamic modelling study. Fish Oceanogr 8:1–12. doi:10.1046/j.1365-2419.1999.00009.x

    Article  Google Scholar 

  • Huang D, Su J, Backhaus J (1999) Modelling the seasonal thermal stratification and baroclinic circulation in the Bohai Sea. Continental Shelf Research 19:1485–1505

    Google Scholar 

  • Li X, Lehner S (2012) Sea surface wind field retrieval from TerraSAR-X and its applications to coastal areas. In: IGARSS 2012–2012 I.E. international geoscience and remote sensing symposium, IEEE, pp 2059–2062

    Google Scholar 

  • Linde M, Hoffmann P, Lenhart HJ, Schlünzen KH (2014) Influence of large offshore wind farms on urban climate; in preparation for the Meteorologische Zeitschrift

    Google Scholar 

  • Mikkelsen R (2003) Actuator disc methods applied to wind turbines. Ph.D. Thesis, Technical University of Denmark

    Google Scholar 

  • O’Driscoll K, Mayer B, Ilyina T, Pohlmann T (2012) Modelling the cycling of persistent organic pollutants (POPs) in the North Sea system: fluxes, loading, seasonality, trends. J Mar Syst 111–112:69–82

    Google Scholar 

  • Pohlmann T (2006) A meso-scale model of the central and southern North Sea: consequences of an improved resolution. Continental Shelf Research 26:2367–2385

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ludewig, E. (2015). Models, Data, and Methodology. In: On the Effect of Offshore Wind Farms on the Atmosphere and Ocean Dynamics. Hamburg Studies on Maritime Affairs, vol 31. Springer, Cham. https://doi.org/10.1007/978-3-319-08641-5_3

Download citation

Publish with us

Policies and ethics