Skip to main content

Part of the book series: Hamburg Studies on Maritime Affairs ((HAMBURG,volume 31))

  • 995 Accesses

Abstract

Presently, we are living in an era of a turnaround in energy policy with strong interests in renewable energies, focusing on wind energy. Increased incident issues on living conditions based on climate change, on one hand, and the fear of nuclear power hazards, on the other hand, bearing problems of nuclear waste and common protests again nuclear energy, result in intense political discussions on applying renewable energies as main energy source. Especially German official heralds the energy turnaround in 2010. On September 28, 2010, the German Federal Cabinet enacted the so-called, in German, Energiekonzept (translation: energy concept). In this concept, the Federal Government postulates the aim to form Germany as one of the most energy-efficient and most environmentally friendly national economy in the near future by offering competitive energy prices and conserving the high-prosperity level of Germany. The aims of this procedure are the phaseout of nuclear energy and the reduction of greenhouse gases by 40 % till 2020 and about 80 % till 2050 (BMWi and BMU 2012). At this juncture, renewable energies, notably wind energy, play an important role in reaching such aims. The percentage of renewable energy electricity generation on gross electricity consumption shall add up to 50 % in 2030 and 80 % in 2050 (BMWi and BMU 2012), whereas the German Federal Government highlights the importance of offshore wind energy as a major element for an environmentally friendly, reliable, and affordable energy supply (BMWi and BMU 2012). Additional offshore is favored due to geographical usable areas, a higher reliability due to consequent high wind speeds over ocean supported by less friction than for onshore structures, and even less political opposition of the population by avoiding the so-called Nimby-Effect, an effect describing shadow and noise disruption realizing health effects for humans. Taking for granted these facts, Germany commands a huge area in the North and Baltic Seas. Accordingly, the development goal of offshore energy is ambitious—a minimum of 25 GW of offshore energy supply till 2030 in the North and Baltic Seas, which accords 15 % of Germany’s total energy demand. Based on year 2012, counting an energy demand of around 617.6 TWh, partitioned in 19.1 % stone coal, 25.7 % brown coal, 11.3 % natural gas, 5.7 % mineral oil and others, 22 % renewable energy (wind, biomass, water, photovoltaic, biogenic garbage), and 16.1 % nuclear energy (BMWi and BMU 2012), offshore wind energy can be a replacement for nuclear energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baidya Roy S (2004) Can large wind farms affect local meteorology? J Geophys Res 109:D19101. doi:10.1029/2004JD004763

    Article  Google Scholar 

  • Baidya Roy S, Traiteur JJ (2010) Impacts of wind farms on surface air temperatures. Proc Natl Acad Sci U S A 107:17899–17904. doi:10.1073/pnas.1000493107

    Article  Google Scholar 

  • BMWi, BMU (2012) Erster Monitoring-Bericht “Energie der Zukunft.” BMWi und BMU Report, Öffentlichkeitsarbeit, pp 1–132

    Google Scholar 

  • Broström G (2008) On the influence of large wind farms on the upper ocean circulation. J Marine Syst 74:585–591

    Article  Google Scholar 

  • Castro Mora J, Calero Barón JM, Riquelme Santos JM, Burgos Payán M (2007) An evolutive algorithm for wind farm optimal design. Neurocomputing 70:2651–2658. doi:10.1016/j.neucom.2006.05.017

    Article  Google Scholar 

  • Christiansen MB, Hasager CB (2005) Wake studies around a large offshore wind farm using satellite and airborne SAR. In: 31st international symposium on remote sensing of environment, St. Petersburg (Russian Federation)

    Google Scholar 

  • Fiedler BH, Bukovsky MS (2011) The effect of a giant wind farm on precipitation in a regional climate model. Environ Res Lett 6:045101. doi:10.1088/1748-9326/6/4/045101

    Article  Google Scholar 

  • Fitch AC, Olson JB, Lundquist JK et al (2012) Local and mesoscale impacts of wind farms as parameterized in a mesoscale NWP Model. Mon Weather Rev 140:3017–3038. doi:10.1175/MWR-D-11-00352.1

    Article  Google Scholar 

  • GWEC, International G (2012) Global wind energy outlook, 2012. REPORT, pp 1–52

    Google Scholar 

  • Hasager C, Rasmussen L, Peña A et al (2013) Wind farm wake: the horns rev photo case. Energies 6:696–716. doi:10.3390/en6020696

    Article  Google Scholar 

  • Jenkins N (1993) Engineering wind farms. Power Eng J 7:53–60

    Article  Google Scholar 

  • Jimenez A, Crespo A, Migoya E, Garcia J (2007) Advances in large-eddy simulation of a wind turbine wake. J Phys Conf Ser 75:012041. doi:10.1088/1742-6596/75/1/012041

    Article  Google Scholar 

  • Keith DW, DeCarolis JF, Denkenberger DC et al (2004) The influence of large-scale wind power on global climate. Proc Natl Acad Sci USA 101:16115–16120

    Article  Google Scholar 

  • Kirk-Davidoff DB, Keith DW (2008) On the climate impact of surface roughness anomalies. J Atmos Sci 65:2215–2234. doi:10.1175/2007JAS2509.1

    Article  Google Scholar 

  • Lackner MA, Elkinton CN (2009) An analytical framework for offshore wind farm layout optimization. Wind Eng 31:17–31. doi:10.1260/030952407780811401

    Article  Google Scholar 

  • Lange M, Burkhard B, Garthe S, Gee K (2010) Analyzing coastal and marine changes: offshore wind farming as a case study. LOICZ Res Stud 36:212

    Google Scholar 

  • Lu H, Porté-Agel F (2011) Large-eddy simulation of a very large wind farm in a stable atmospheric boundary layer. Phys Fluids 23:065101. doi:10.1063/1.3589857

    Article  Google Scholar 

  • Mosetti G, Poloni C, Diviacco B (1994) Optimization of wind turbine positioning in large windfarms by means of a genetic algorithm. J Wind Eng Ind Aerodynamics 51:105–116. doi:10.1016/0167-6105(94)90080-9

    Article  Google Scholar 

  • Nunneri C, Lenhart HJ, Burkhard B, Windhorst W (2008) Ecological risk as a tool for evaluating the effects of offshore wind farm construction in the North Sea. Reg Environ Chang 8:31–43. doi:10.1007/s10113-008-0045-9

    Article  Google Scholar 

  • Paskyabi MB, Fer I (2012) Upper ocean response to large wind farm effect in the presence of surface gravity waves. Energy Procedia 24:245–254. doi:10.1016/j.egypro.2012.06.106

    Article  Google Scholar 

  • Polinder H, de Haan S, Dubois MR (2005) Basic operation principles and electrical conversion systems of wind turbines. EPE J 15:43

    Google Scholar 

  • Porté-Agel F, Wu Y-T, Lu H, Conzemius RJ (2011) Large-eddy simulation of atmospheric boundary layer flow through wind turbines and wind farms. J Wind Eng Ind Aerodynamics 99:154–168. doi:10.1016/j.jweia.2011.01.011

    Article  Google Scholar 

  • Sutherland HJ, Mandell JF (1996) Application of the US high cycle fatigue data base to wind turbine blade lifetime predictions. In: Proceeding of Energy Week, AMSE

    Google Scholar 

  • Wang C, Prinn RG (2010) Potential climatic impacts and reliability of very large-scale wind farms. Atmos Chem Phys 10:2053–2061. doi:10.5194/acp-10-2053-2010

    Article  Google Scholar 

  • Wolsink M (2000) Wind power and the NIMBY-myth: institutional capacity and the limited significance of public support. Renew Energy 21:49–64. doi:10.1016/S0960-1481(99)00130-5

    Article  Google Scholar 

  • Wu Y-T, Porté-Agel F (2010) Large-eddy simulation of wind-turbine wakes: evaluation of turbine parametrisations. Boundary-Layer Meteorol 138:345–366. doi:10.1007/s10546-010-9569-x

    Article  Google Scholar 

  • Zettler ML, Pollehne F (2006) The impact of wind engine constructions on benthic growth patterns in the western Baltic. In: Köller J, Köppel J, Peters W (eds) Offshore wind energy research on environmental impacts. Springer, Berlin, pp 201–222

    Chapter  Google Scholar 

  • Zhou L, Tian Y, Roy SB et al (2012) Impacts of wind farms on land surface temperature. Nat Clim Chang 2:1–5. doi:10.1038/nclimate1505

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ludewig, E. (2015). Introduction. In: On the Effect of Offshore Wind Farms on the Atmosphere and Ocean Dynamics. Hamburg Studies on Maritime Affairs, vol 31. Springer, Cham. https://doi.org/10.1007/978-3-319-08641-5_1

Download citation

Publish with us

Policies and ethics