Skip to main content

Introduction, Motivation, and Background

  • Chapter
  • First Online:
Book cover Tautological Control Systems

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSCONTROL))

  • 809 Accesses

Abstract

One can study nonlinear control theory from the point of view of applications, or from a more fundamental point of view, where system structure is a key element. From the practical point of view, questions that arise are often of the form, “How can we...”, for example, “How can we steer a system from point \(A\) to point \(B\)?” or, “How can we stabilise this unstable equilibrium point?” or, “How can we manoeuvre this vehicle in the most efficient manner?” From a fundamental point of view, the problems are often of a more existential nature, with, “How can we” replaced with, “Can we”. These existential questions are often very difficult to answer in any sort of generality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We understand that there are many ways of formulating system equivalence. But here we are content to be, not only vague, but far from comprehensive.

  2. 2.

    Sussmann actually has a more sophisticated notion of degree, but for this example it boils down to the one we give.

  3. 3.

    The terminology “tautological” arises from two different attributes of our framework. First of all, when one makes the natural connection from our systems to standard control systems, we encounter the identity map (Example 5.2–2). Second, in our framework we prove that the only pure feedback transformation is the identity transformation (cf. Proposition 5.39).

  4. 4.

    A bornology on a set \(\mathcal {S}\) is a family \(\fancyscript{B}\) of subsets of \(\mathcal {S}\), called bounded sets, and satisfying the axioms:

    1. 1.

      \(\mathcal {S}\) is covered by bounded sets, i.e., \(\mathcal {S}=\cup _{B\in \fancyscript{B}}B\);

    2. 2.

      subsets of bounded sets are bounded, i.e., if \(B\in \fancyscript{B}\) and if \(A\subseteq B\), then \(A\in \fancyscript{B}\);

    3. 3.

      finite unions of bounded sets are bounded, i.e., if \(B_1,\dots ,B_k\in \fancyscript{B}\), then \(\cup _{j=1}^kB_j\in \fancyscript{B}\).

References

  1. Abraham R, Marsden JE, Ratiu TS (1988) Manifolds, tensor analysis, and applications, 2nd edn. No. 75 in Applied Mathematical Sciences. Springer, Berlin

    Google Scholar 

  2. Agrachev AA, Gamkrelidze RV (1978) The exponential representation of flows and the chronological calculus. Math USSR-Sb 107(4):467–532

    MathSciNet  Google Scholar 

  3. Agrachev AA, Sachkov Y (2004) Control theory from the geometric viewpoint, Encyclopedia of Mathematical Sciences, vol 87. Springer, Berlin

    Google Scholar 

  4. Aubin JP, Cellina A (1984) Differential inclusions: set-valued maps and viability theory, Grundlehren der Mathematischen Wissenschaften, vol 264. Springer, Berlin

    Google Scholar 

  5. Barbero-Liñán M, Muñoz-Lecanda MC (2009) Geometric approach to Pontryagin’s Maximum Principle. Acta Appl Math 108(2):429–485

    Google Scholar 

  6. Bianchini RM, Stefani G (1993) Controllability along a trajectory: a variational approach. SIAM J Control Optim 31(4):900–927

    Article  MATH  MathSciNet  Google Scholar 

  7. Bloch AM (2003) Nonholonomic mechanics and control, Interdisciplinary Applied Mathematics, vol 24. Springer, Berlin

    Book  Google Scholar 

  8. Bredon GE (1997) Sheaf theory, 2nd edn. No. 170 in Graduate Texts in Mathematics. Springer, Berlin

    Google Scholar 

  9. Brockett RW (1977) Control theory and analytical mechanics. In: Martin C, Hermann R (eds) Geometric control theory. Math Sci Press, Brookline, pp 1–48

    Google Scholar 

  10. Bryant RL, Gardner RB (1993) Control structures. Geometry in nonlinear control and differential inclusions. No. 32 in Banach Center Publications, Polish Academy of Sciences, Institute for Mathematics, Warsaw, pp 111–121

    Google Scholar 

  11. Bullo F, Lewis AD (2004) Geometric control of mechanical systems: modeling, analysis, and design for simple mechanical systems. No. 49 in Texts in Applied Mathematics. Springer, Berlin

    Google Scholar 

  12. Bus JCP (1984) The Lagrange multiplier rule on manifolds and optimal control of nonlinear systems. SIAM J Control Optim 22(5):740–757

    Article  MATH  MathSciNet  Google Scholar 

  13. Cartan H (1957) Variétés analytiques réelles et variétés analytiques complexes. Bull Soc Math 85:77–99

    MATH  MathSciNet  Google Scholar 

  14. Cieliebak K, Eliashberg Y (2012) From Stein to Weinstein and back: symplectic geometry of affine complex manifolds. No. 59 in American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI

    Google Scholar 

  15. Conway JB (1985) A course in functional analysis, 2nd edn. No. 96 in Graduate Texts in Mathematics. Springer, Berlin

    Google Scholar 

  16. Delgado-Téllez M, Ibort A (2003) A panorama of geometric optimal control theory. Extracta Math 18(2):129–151

    MATH  MathSciNet  Google Scholar 

  17. Filippov AF (1988) Differential equations with discontinuous righthand sides. No. 18 in Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  18. Fuller AT (1960) Relay control systems optimized for various performance criteria. In: Proceedings of the First IFAC World Congress. IFAC, Butterworth & Co. Ltd., London, Moscow, pp 510–519

    Google Scholar 

  19. Gardner RB (1989) The method of equivalence and its applications. No. 58 in Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia, PA

    Google Scholar 

  20. Godement R (1958) Topologie algébrique et théorie des faisceaux. No. 13 in Publications de l’Institut de mathématique de l’Université de Strasbourg. Hermann, Paris

    Google Scholar 

  21. Groethendieck A (1973) Topological vector spaces. Notes on Mathematics and its Applications. Gordon & Breach Science Publishers, New York

    Google Scholar 

  22. Gunning RC (1990) Introduction to holomorphic functions of several variables, vol I: function theory. Wadsworth & Brooks/Cole Mathematics Series. Wadsworth & Brooks/Cole, Belmont

    Google Scholar 

  23. Gunning RC (1990) Introduction to holomorphic functions of several variables, vol II: local theory. Wadsworth & Brooks/Cole Mathematics Series. Wadsworth & Brooks/Cole, Belmont

    Google Scholar 

  24. Gunning RC (1990) Introduction to holomorphic functions of several variables, vol III: homological theory. Wadsworth & Brooks/Cole Mathematics Series. Wadsworth & Brooks/Cole, Belmont

    Google Scholar 

  25. Hermann R (1988) Invariants for feedback equivalence and Cauchy characteristic multifoliations of nonlinear control systems. Acta Appl Math 11(2):123–153

    Google Scholar 

  26. Hermann R (1989) Nonlinear feedback control and systems of partial differential equations. Acta Appl Math 17(1):41–94

    Google Scholar 

  27. Hermann R, Krener AJ (1977) Nonlinear controllability and observability. Institute of Electrical and Electronics Engineers. Trans Autom Control 22(5):728–740

    Article  MATH  MathSciNet  Google Scholar 

  28. Hogbe-Nlend H (1977) Bornologies and functional analysis. No. 26 in North Holland Mathematical Studies. (Translated from the French by Moscatelli VB). North-Holland, Amsterdam

    Google Scholar 

  29. Horváth J (1966) Topological vector spaces and distributions, vol I. Addison Wesley, Reading

    MATH  Google Scholar 

  30. Isidori A (1995) Nonlinear control systems. Communications and Control Engineering Series, 3rd edn. Springer, Berlin

    Google Scholar 

  31. Jafarpour S, Lewis AD (2014) Locally convex topologies and control theory. Submitted to SIAM J Control Optim

    Google Scholar 

  32. Jafarpour S, Lewis AD (2014) Real analytic control systems. Submitted to 53rd IEEE Conference on Decision and Control

    Google Scholar 

  33. Jafarpour S, Lewis AD (2014) Time-varying vector fields and their flows. To appear in Springer Briefs in Mathematics

    Google Scholar 

  34. Jakubczyk B, Respondek W (1980) On linearization of control systems. Bull Acad Polon Sci Sér Sci Math Astronom Phys 28(9–10):517–522

    Google Scholar 

  35. Jarchow H (1981) Locally convex spaces. Mathematical Textbooks. Teubner, Leipzig

    Book  Google Scholar 

  36. Jurdjevic V (1997) Geometric control theory. No. 51 in Cambridge Studies in Advanced Mathematics. Cambridge University Press, New York

    Google Scholar 

  37. Kang W, Krener AJ (1998) Extended quadratic controller normal form and dynamic feedback linearization of nonlinear systems. SIAM J Control Optim 30(6):1319–1337

    Article  MathSciNet  Google Scholar 

  38. Kang W, Krener AJ (2006) Normal forms of nonlinear control systems. Chaos in automatic control, control engineering. Taylor & Francis, New York

    Google Scholar 

  39. Kashiwara M, Schapira P (1990) Sheaves on manifolds. No. 292 in Grundlehren der Mathematischen Wissenschaften. Springer, Berlin

    Google Scholar 

  40. Kawski M (1990) High-order small-time local controllability. Nonlinear controllability and optimal control. Monographs and Textbooks in Pure and Applied Mathematics, vol 133. Dekker Marcel Dekker, New York, pp 431–467

    Google Scholar 

  41. Kawski M (1999) Controllability via chronological calculus. In: Proceedings of the 38th IEEE conference on decision and control, pp 2920–2926. Institute of Electrical and Electronics Engineers, Phoenix, AZ

    Google Scholar 

  42. Kawski M (2006) On the problem whether controllability is finitely determined. In: Proceedings of MTNS ’06

    Google Scholar 

  43. Khalil HK (1996) Nonlinear systems, 2nd edn. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  44. Krantz SG, Parks HR (2002) A primer of real analytic functions. Birkhäuser Advanced Texts, 2nd edn. Birkhäuser, Boston

    Book  Google Scholar 

  45. Langerock B (2003) Geometric aspects of the maximum principle and lifts over a bundle map. Acta Appl Math 77(1):71–104

    Google Scholar 

  46. Lewis AD (2012) Fundamental problems of geometric control theory. In: Proceedings of the 51st IEEE conference on decision and control, pp 7511–7516. Institute of Electrical and Electronics Engineers, Maui

    Google Scholar 

  47. Nagano T (1966) Linear differential systems with singularities and an application to transitive Lie algebras. J Math Soc Jpn 18:398–404

    Article  MATH  MathSciNet  Google Scholar 

  48. Nijmeijer H (1983) Nonlinear multivariable control: a differential geometric approach. Ph.D. thesis, University of Groningen

    Google Scholar 

  49. Nijmeijer H, van der Schaft AJ (1982) Controlled invariance for nonlinear systems. Institute of Electrical and Electronics Engineers. Trans Autom Control 27(4):904–914

    Article  MATH  Google Scholar 

  50. Nijmeijer H, van der Schaft AJ (1990) Nonlinear dynamical control systems. Springer, Berlin

    Book  MATH  Google Scholar 

  51. Pasillas-Lépine W, Respondek W (2002) Contact systems and corank one involutive subdistributions. Acta Appl Math 69(2):105–128

    Google Scholar 

  52. Pietsch A (1969) Nuclear locally convex spaces. No. 66 in Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer, Berlin

    Google Scholar 

  53. Polderman JW, Willems JC (1998) Introduction to mathematical systems theory. No. 26 in Texts in Applied Mathematics. Springer, Berlin

    Google Scholar 

  54. Ramanan S (2005) Global calculus. No. 65 in Graduate Studies in Mathematics. American Mathematical Society, Providence

    Google Scholar 

  55. Rudin W (1991) Functional analysis. International Series in Pure and Applied Mathematics, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  56. Sastry S (1999) Nonlinear systems: analysis, stability, and control. No. 10 in Interdisciplinary Applied Mathematics. Springer, Berlin

    Google Scholar 

  57. Schaefer HH, Wolff MP (1999) Topological vector spaces, 2nd edn. No. 3 in Graduate Texts in Mathematics. Springer, Berlin

    Google Scholar 

  58. Smirnov GV (2002) Introduction to the theory of differential inclusions, Graduate Studies in Mathematics, vol 41. American Mathematical Society, Providence

    Google Scholar 

  59. Sontag ED (1998) Mathematical control theory: deterministic finite dimensional systems, 2nd edn. No. 6 in Texts in Applied Mathematics. Springer, Berlin

    Google Scholar 

  60. Stacks Project Authors (2014) Stacks Project. http://stacks.math.columbia.edu

  61. Sussmann HJ (1978) A sufficient condition for local controllability. SIAM J Control Optim 16(5):790–802

    Article  MATH  MathSciNet  Google Scholar 

  62. Sussmann HJ (1983) Lie brackets and local controllability: a sufficient condition for scalar-input systems. SIAM J Control Optim 21(5):686–713

    Article  MATH  MathSciNet  Google Scholar 

  63. Sussmann HJ (1987) A general theorem on local controllability. SIAM J Control Optim 25(1):158–194

    Article  MATH  MathSciNet  Google Scholar 

  64. Sussmann HJ (1997) An introduction to the coordinate-free maximum principle. In: Jakubczyk B, Respondek W (eds) Geometry of feedback and optimal control. Dekker Marcel Dekker, New York, pp 463–557

    Google Scholar 

  65. Sussmann HJ (2002) Needle variations and almost lower semicontinuous differential inclusions. Set-Valued Anal 10(2–3):33–285

    Google Scholar 

  66. Sussmann HJ, Jurdjevic V (1972) Controllability of nonlinear systems. J Differ Equ 12:95–116

    Article  MATH  MathSciNet  Google Scholar 

  67. Taylor JL (2002) Several complex variables with connections to algebraic geometry and Lie groups. No. 46 in Graduate Studies in Mathematics. American Mathematical Society, Providence

    Google Scholar 

  68. van der Schaft AJ (1983) System theoretic descriptions of physical systems. Ph.D. thesis, University of Groningen

    Google Scholar 

  69. Willems JC (1979) System theoretic models for the analysis of physical systems. Ricerche di Automatica 10(2):71–106

    MATH  MathSciNet  Google Scholar 

  70. Willems JC (1986) From time series to linear systems. I. Finite-dimensional linear time invariant systems. Automatica—J IFAC 22(5):561–580

    Article  MATH  MathSciNet  Google Scholar 

  71. Willems JC (1986) From time series to linear systems. II. Exact modelling. Automatica—J IFAC 22(6):675–694

    Article  MATH  MathSciNet  Google Scholar 

  72. Willems JC (1987) From time series to linear systems. III. Approximate modelling. Automatica. J IFAC Int Fed Autom Control 23(1):87–115

    Article  MATH  MathSciNet  Google Scholar 

  73. Willems JC (1991) Paradigms and puzzles in the theory of dynamical systems. Institute of Electrical and Electronics Engineers. IEEE Trans Automat Control 36(3):259–294

    Article  MATH  MathSciNet  Google Scholar 

  74. Willems JC (2007) The behavioral approach to open and interconnected systems. IEEE Control Systems Magazine pp 46–99

    Google Scholar 

  75. Wonham WM (1985) Linear multivariable control: a geometric approach, 3rd edn. No. 10 in Applications of Mathematics. Springer, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew D. Lewis .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Lewis, A.D. (2014). Introduction, Motivation, and Background. In: Tautological Control Systems. SpringerBriefs in Electrical and Computer Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-08638-5_1

Download citation

Publish with us

Policies and ethics