Field-Flow Fractionation

  • Harald Pasch
  • Muhammad Imran Malik
Part of the Springer Laboratory book series (SPLABORATORY)


Size exclusion chromatography separates polyolefins according to hydrodynamic size in solution and it is assumed that one hydrodynamic size corresponds strictly to one molar mass. This, however, is not always the case as has been shown, e.g. for high molar mass branched polymers. For such materials, co-elution of linear and branched molecules having different molar masses has been observed. On the other hand, samples with very high molar masses cause problems in SEC because the largest molecules are frequently shear degraded by the pores and frits of the columns, resulting in molar masses that are lower compared to those of the injected sample. Most of the above problems can be avoided when channel-based fractionation methods are used. This chapter presents some latest results on polyolefin analysis by field-flow fractionation. The fundamentals of the technique are discussed and a number of experimental approaches are given.


Molar Mass Size Exclusion Chromatography High Molar Mass Average Molar Mass Molar Mass Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Johann C, Kilz P (1991) J Appl Polym Sci Appl Polym Symp 48:111CrossRefGoogle Scholar
  2. 2.
    Wintermantel M, Antonietti M, Schmidt M (1993) J Appl Polym Sci Appl Polym Symp 5:91CrossRefGoogle Scholar
  3. 3.
    Podzimek S (1994) J Appl Polym Sci 54:91CrossRefGoogle Scholar
  4. 4.
    Percec V, Ahn CH, Cho WD, Jamieson AM, Kim J, Leman T, Schmidt M, Gerle M, Möller M, Prokhorova SA, Sheiko SS, Cheng SD, Zhang A, Ungar G, Yeardley DJ (1998) J Am Chem Soc 120:8619CrossRefGoogle Scholar
  5. 5.
    Gerle M, Fischer K, Roos S, Muller AHE, Schmidt M (1999) Macromolecules 32:2629CrossRefGoogle Scholar
  6. 6.
    Mes EPC, de Jonge H, Klein T, Welz RR, Gillespie DT (2007) J Chromatogr A 1154:319CrossRefGoogle Scholar
  7. 7.
    Otte T, Pasch H, Macko T, Brüll R, Stadler FJ, Kaschta J, Becker F, Buback MJ (2011) Chromatogr A 1218:4257CrossRefGoogle Scholar
  8. 8.
    Makan AC, Otte T, Pasch H (2012) Macromolecules 45:5247CrossRefGoogle Scholar
  9. 9.
    Slagowski EL, Fetters LJ, McIntyre D (1974) Macromolecules 7:394CrossRefGoogle Scholar
  10. 10.
    Zammit MD, Davis TP, Suddaby KG (1998) Polymer 39:5789CrossRefGoogle Scholar
  11. 11.
    Aust N (2003) J Biochem Biophys Methods 56:323CrossRefGoogle Scholar
  12. 12.
    Cave RA, Seabrook SA, Gidley MJ, Gilbert RG (2009) Biomacromolecules 10:2245CrossRefGoogle Scholar
  13. 13.
    Messaud FA, Sanderson RD, Runyon JR, Otte T, Pasch H, Williams SKR (2009) Prog Polym Sci 34:351CrossRefGoogle Scholar
  14. 14.
    Stadler FJ, Kaschta J, Münstedt H, Becker F, Buback M (2009) Rheol Acta 48:479CrossRefGoogle Scholar
  15. 15.
    Schimpf ME, Caldwell K, Giddings JC (2000) Field flow fractionation handbook. John Wiley, Hoboken, NJGoogle Scholar
  16. 16.
    van Bruijnsvoort M, Wahlund KG, Nilsson G, Kok WTJ (2001) Chromatogr A 925:171CrossRefGoogle Scholar
  17. 17.
    Rojas CC, Wahlund KG, Bergenstahl B, Nilsson L (2008) Biomacromolecules 9:1684CrossRefGoogle Scholar
  18. 18.
    Rolland-Sabaté A, Guilois S, Jaillais B, Colonna P (2011) Anal Bioanal Chem 399:1493CrossRefGoogle Scholar
  19. 19.
    Podzimek S (2011) Light scattering, size exclusion chromatography and asymmetric flow field flow fractionation: powerful tools for the characterization of polymers, proteins and nanoparticles. John Wiley, Hoboken, NJCrossRefGoogle Scholar
  20. 20.
    Bang DY, Shin DY, Lee S, Moon MH (2007) J Chromatogr A 1147:200CrossRefGoogle Scholar
  21. 21.
    Otte T, Brüll R, Macko T, Pasch H, Klein T (2010) J Chromatogr A 1217:722CrossRefGoogle Scholar
  22. 22.
    Otte T, Klein T, Brüll R, Macko T, Pasch H (2011) J Chromatogr A 1218:4240CrossRefGoogle Scholar
  23. 23.
    White RJ (1997) Polym Int 43:373CrossRefGoogle Scholar
  24. 24.
    Liu Y, Radke W, Pasch H (2006) Macromolecules 39:2004CrossRefGoogle Scholar
  25. 25.
  26. 26.
    Giddings JC (1993) Science 260:1456CrossRefGoogle Scholar
  27. 27.
  28. 28.
    Pasch H, Malik MI, Macko T (2013) Adv Polym Sci 251:77CrossRefGoogle Scholar
  29. 29.
    Gao S, Caldwell D, Myers N, Giddings JC (1985) Macromolecules 18:1272CrossRefGoogle Scholar
  30. 30.
    Miller ME, Giddings JC (1998) J Micro Sep 10:75CrossRefGoogle Scholar
  31. 31.
    Otte T, Pasch H, Brüll R, Macko T (2011) Macromol Chem Phys 212:401Google Scholar
  32. 32.
    Trinkle S, Friedrich C (2001) Rheol Acta 40:322CrossRefGoogle Scholar
  33. 33.
    Aust N, Parth M, Lederer K (2001) Int J Polym Anal Charact 6:245CrossRefGoogle Scholar
  34. 34.
    Parth M, Aust N, Lederer K (2003) Int J Polym Anal Charact 8:175CrossRefGoogle Scholar
  35. 35.
    Grinshpun V, Rudin A (1985) J Appl Polym Sci 30:2413CrossRefGoogle Scholar
  36. 36.
    Pasti L, Melucci D, Contado C, Dondi F, Mingozzi I (2002) J Sep Sci 25:691CrossRefGoogle Scholar
  37. 37.
    de Groot AW, Hamre WJ (1993) J Chromatogr A 648:33CrossRefGoogle Scholar
  38. 38.
    Barth HG, Carlin FJ Jr (1984) J Liq Chromatogr 7:1717CrossRefGoogle Scholar
  39. 39.
    Zigon M, The NK, Shuyao C, Grubisic-Gallot Z (1997) J Liq Chromatogr 20:2155CrossRefGoogle Scholar
  40. 40.
    Schnabel M (1981) Polymer degradation: principles and practical applications. Hanser International, MunichGoogle Scholar
  41. 41.
    Constantin D, Hert M, Machon JP (1981) Eur Polym J 17:115CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Harald Pasch
    • 1
  • Muhammad Imran Malik
    • 2
  1. 1.Department of Chemistry and Polymer ScienceUniversity of StellenboschMatielandSouth Africa
  2. 2.International Center for Chemical and Biological Sciences (ICCBS) H.E.J. Research Institute of ChemistryUniversity of KarachiKarachiPakistan

Personalised recommendations