Advertisement

Crystallization-Based Fractionation Techniques

  • Harald Pasch
  • Muhammad Imran Malik
Chapter
Part of the Springer Laboratory book series (SPLABORATORY)

Abstract

The vast majority of commercial polyolefins are semi-crystalline materials. Depending on the chemical composition and tacticity, their melting temperatures range from ambient to temperatures exceeding 160 °C. Polyolefins form various crystalline structures that can be investigated with microscopic, spectroscopic and scattering techniques. For the analysis of the chemical composition and branching, crystallization-based fractionation methods can be used. This chapter discusses analytical techniques that are based on the crystallizability of polyolefins from dilute solutions. Experimental set-ups will be presented for the fractionation of olefin copolymers and polyolefin blends.

Keywords

Differential Scanning Calorimetry Molar Mass Size Exclusion Chromatography High Molar Mass Comonomer Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Wild L, Ryle T, Knobeloch D, Peat IR (1982) J Polym Sci Polym Phys Ed 20:441Google Scholar
  2. 2.
    Wild L, Blatz C (1993) In: Chung T (ed) New advances in polyolefins. Plenum, New York, NYGoogle Scholar
  3. 3.
    Alamo R, Mandelkern L (1989) Macromolecules 22:1273Google Scholar
  4. 4.
    Monrabal B (1994) J Appl Polym Sci 52:491Google Scholar
  5. 5.
    Desreux V, Spiegels ML (1950) Bull Soc Chim Belg 59:476Google Scholar
  6. 6.
    Soares JBP, Hamielec AE (1999) In: Petrick RA (ed) Modern techniques for polymer characterization. Wiley, New York, NY, p 1Google Scholar
  7. 7.
    Anatawaraskul S, Soares JBP, Wood-Adams PM (2005) Adv Polym Sci 182:1Google Scholar
  8. 8.
    Monrabal B (2000) Temperature rising elution fractionation and crystallization analysis fractionation. In: Meyers RA (ed) Encyclopedia of analytical chemistry. Wiley, Chichester, p 9074Google Scholar
  9. 9.
    Monrabal B (2013) Adv Polym Sci 257:203Google Scholar
  10. 10.
    Pasch H, Malik MI, Macko T (2013) Adv Polym Sci 251:77Google Scholar
  11. 11.
    Flory PJ (1948) Trans Farad Soc 51:848Google Scholar
  12. 12.
    Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca, NYGoogle Scholar
  13. 13.
    Wunderlich B (1980) Macromolecular physics, vol 3. Academic, New York, NYGoogle Scholar
  14. 14.
    Huggins ML, Okamoto H (1967) Chapter A: Theoretical considerations. In: Cantow MJ (ed) Polymer fractionation. Academic, New York, NYGoogle Scholar
  15. 15.
    Mueller A, Arnal L (2005) Progr Polym Sci 30:559Google Scholar
  16. 16.
    Wild L (1991) Adv Polym Sci 98:1Google Scholar
  17. 17.
    Hazlitt LG (1990) J Appl Polym Sci Appl Polym Symp 45:25Google Scholar
  18. 18.
    Kuhlman RL, Klosin J (2010) Macromolecules 43:7903Google Scholar
  19. 19.
    Cossoul E, Baverel L, Martigny E, Macko T, Boisson C, Boyron O (2013) Macromol Symp 330:42Google Scholar
  20. 20.
    Monrabal B (2007) Microstructure characterization of polyolefins. In: Abstracts: advances in polyolefins, 23–26 September 2007, ACS, Division of Polymer Chemistry, Santa RosaGoogle Scholar
  21. 21.
  22. 22.
    Tomba JP, Carella JM, Pastor JM (2005) J Polym Sci B Polym Phys 43:3083Google Scholar
  23. 23.
    Hasan ATMK, Liu B, Terano M (2005) Polym Bull 54:22Google Scholar
  24. 24.
    Hasan ATMK, Fang Y, Liu B, Terano M (2010) Polymer 51:362Google Scholar
  25. 25.
    Liu Y, Bo S, Zhu Y, Zhang W (2005) J Appl Polym Sci 97:232Google Scholar
  26. 26.
    Zhang Y (2006) J Appl Polym Sci 99:845Google Scholar
  27. 27.
    Assumption HJ, Vermeulen JP, Jarrett WL, Mathias LJ, van Reenen AJ (2006) Polymer 47:67Google Scholar
  28. 28.
    Harding GW, van Reenen AJ (2006) Macromol Chem Phys 207:1680Google Scholar
  29. 29.
    Suzuki S, Nakamura Y, Hasan ATMK, Liu B, Terano M, Nakatani H (2005) Polym Bull 54:311Google Scholar
  30. 30.
    Gupta P, Wilkes GL, Sukhadia AM, Krishnaswamy RK, Lamborn MJ, Wharry SM, Tso CC, DesLauriers PJ, Mansfield T, Beyer FL (2005) Polymer 46:8819Google Scholar
  31. 31.
    Shan CLP, Hazlitt LG (2007) Macromol Symp 257:80Google Scholar
  32. 32.
    Albrecht A, Brüll R, Macko T, Sinha P, Pasch H (2008) Macromol Chem Phys 209:1909Google Scholar
  33. 33.
    Zhu H, Monrabal B, Han CC, Wang D (2008) Macromolecules 41:826Google Scholar
  34. 34.
    Amer I, van Reenen A (2009) Macromol Symp 282:33Google Scholar
  35. 35.
    Anantawaraskul S, Bongsontia W, Soares JBP (2009) Macromol Symp 282:167Google Scholar
  36. 36.
    Vadlamudi M, Subramanian G, Shanbhag S, Alamo RG, Varma-Nai M, Fiscus DM, Brown GM, Lu C, Ruff CJ (2009) Macromol Symp 282:1Google Scholar
  37. 37.
    de Goede E, Mallon P, Pasch H (2010) Macromol Mater Eng 295:366Google Scholar
  38. 38.
    Nakano M, Goto Y (1981) J Appl Polym Sci 26:4217Google Scholar
  39. 39.
    Aust N, Beytollahi-Amtmann I, Lederer K (1995) Int J Polym Anal Char 1:245Google Scholar
  40. 40.
    Faldi A, Soares JBP (2001) Polymer 42:3057Google Scholar
  41. 41.
    Li Pi Shan C, Gillespie D, Hazlitt L (2005) The Dow Company, Ecorep, LyonGoogle Scholar
  42. 42.
    Gillespie D, Hazlitt L, Li Pi Shan C (2006) Proceedings of the 1st International Conference on Polyolefin Characterization (ICPC), Houston, October 2006Google Scholar
  43. 43.
    Yau WW (2007) Macromol Symp 257:29Google Scholar
  44. 44.
    Ortin A, Monrabal B, Sancho-Tello J (2007) Macromol Symp 257:13Google Scholar
  45. 45.
  46. 46.
    Zhang Z (2009) Macromol Symp 282:111Google Scholar
  47. 47.
  48. 48.
    DesLauriers PJ, Rohlfing DC, Hsieh ET (2002) Polymer 43:159Google Scholar
  49. 49.
    Fox JJ, Martin AE (1937) Proc Royal Soc Lond 162:419Google Scholar
  50. 50.
    Arriola DJ, Carnahan EM, Hustad PD, Kuhlman RL (2006) Science 321:714Google Scholar
  51. 51.
    Galli P, Haylock JC, Simonazzi T (1995) Manufacturing and properties of polypropylene copolymers. In: Karger-Kocsis J (ed) Polypropylene: structure, blends and composites, vol 3. Chapman & Hall, LondonGoogle Scholar
  52. 52.
    Mirabella F (1993) Polymer 34:1729Google Scholar
  53. 53.
    Usami T, Gotoh Y, Umemoto H, Takayama S (1993) J Appl Polym Sci Appl Polym Symp 52:145Google Scholar
  54. 54.
    Fan Z, Zhang Y, Xu J, Wang H, Feng L (2001) Polymer 42:5559Google Scholar
  55. 55.
    Xu J, Feng L, Yang S, Wu Y (1997) Polymer 38:4381Google Scholar
  56. 56.
    Sun Z, Yu F, Qi Y (1991) Polymer 32:1059Google Scholar
  57. 57.
    Feng Y, Hay JN (1998) Polymer 39:6723Google Scholar
  58. 58.
    Randall JC (1989) JMS-Rev Macromol Chem Phys C29:201Google Scholar
  59. 59.
    Tosi C, Ciampelli F (1973) Adv Polym Sci 12:87Google Scholar
  60. 60.
    Baker BB, Bonesteel JK, Keating MY (1990) Thermochim Acta 166:53Google Scholar
  61. 61.
    Xu J, Fu Z, Fan Z, Feng L (2002) Eur Polym J 38:1739Google Scholar
  62. 62.
    Zacur R, Goizueta G, Capiati N (1999) Polym Eng Sci 39:921Google Scholar
  63. 63.
    Ray GJ, Johnson PE, Knox JR (1977) Macromolecules 10:773Google Scholar
  64. 64.
    Randall JC (1978) Macromolecules 11:33Google Scholar
  65. 65.
    Kanezaki T, Kume K, Sato K, Asakura T (1993) Polymer 34:3129Google Scholar
  66. 66.
    Zacur R, Goizueta G, Capiati N (2000) Polym Eng Sci 40:1921Google Scholar
  67. 67.
    Nakatani H, Manabe N, Yokota Y, Minami H, Suzuki S, Yamaguchi F, Terano M (2007) Polym Int 56:1152Google Scholar
  68. 68.
    Kakugo M, Miyatake T, Mizunuma K, Kawai Y (1988) Macromolecules 21:2309Google Scholar
  69. 69.
    Pasch H, Trathnigg B (2013) Multidimensional HPLC of polymers. Springer, BerlinGoogle Scholar
  70. 70.
    Verstrate G, Cozewith C, West RK, Davis WM, Capone GA (1999) Macromolecules 32:3837Google Scholar
  71. 71.
    Ozzetti RA, De Oliveira Filho AP, Schuchardt U, Mandelli DJ (2000) Appl Polym Sci 85:734Google Scholar
  72. 72.
    Albrecht A, Heinz LC, Lilge D, Pasch H (2007) Macromol Symp 257:46Google Scholar
  73. 73.
    Bly RM, Kiener PE, Fries BA (1966) Anal Chem 38:217Google Scholar
  74. 74.
    Luongo JPJ (1960) Appl Polym Sci 3:302Google Scholar
  75. 75.
    Andreassen E (1999) Infrared and Raman spectroscopy of polypropylene. In: Karger-Kocsis J (ed) Polypropylene: an A-Z reference. Kluwer, Dordrecht, p 320Google Scholar
  76. 76.
    Painter PC, Watzek M, Koenig JL (1977) Polymer 18:1169Google Scholar
  77. 77.
    Monasse B, Haudin JM (1995) Molecular structure of polypropylene homo- and copolymers. In: Karger-Kocsis J (ed) Polypropylene: structure, blends and composites. Chapman & Hall, LondonGoogle Scholar
  78. 78.
    Quynn RG, Riley JL, Young DA, Noether HDJ (1959) Appl Polym Sci 2:166Google Scholar
  79. 79.
    Stein RS, Sutherland GBBM (1953) J Chem Phys 21:370Google Scholar
  80. 80.
    Tobin MC, Carrano MJJ (1957) Polym Sci 24:93Google Scholar
  81. 81.
    Drushel HV, Iddings FA (1963) Anal Chem 35:28Google Scholar
  82. 82.
    Snyder RG, Maroncelli M, Strauss HL, Hallmark VM (1986) J Phys Chem 90:5623Google Scholar
  83. 83.
    de Goede E, Mallon P, Pasch H (2012) Macromol Mater Eng 297:26Google Scholar
  84. 84.
    Struik LCE (1987) Polymer 28:1521Google Scholar
  85. 85.
    Halim Hamid S (2000) Handbook of polymer degradation. Marcel Dekker, New York, NYGoogle Scholar
  86. 86.
    Michaeli W, Bittner M (1992) In: Menges G, Michaeli W, Bittner M (eds) Recycling von Kunststoffen. Carl Hanser, MünchenGoogle Scholar
  87. 87.
    Kroschwitz J (1986) Encycl Polym Sci. Wiley, New York, NYGoogle Scholar
  88. 88.
    Bolland JL, Gee G (1946) Trans Faraday Soc 42:236Google Scholar
  89. 89.
    Bolland JL, Gee G (1946) Trans Faraday Soc 44:669Google Scholar
  90. 90.
    Gugumus G (1995) Polym Degrad Stab 49:28Google Scholar
  91. 91.
    Niki E, Dekker C, Mayo FR (1973) J Polym Sci Part A Polym Chem 11:2813Google Scholar
  92. 92.
    Adams JH (1970) J Polym Sci Part A-1 8:1077Google Scholar
  93. 93.
    Adams JH, Goodrich JE (1970) J Polym Sci Part A-1 8:1269Google Scholar
  94. 94.
    Lacoste J, Vaillant D, Carlsson DJ (1993) J Polym Sci Part A Polym Chem 31:715Google Scholar
  95. 95.
    Gijsman P, Kroon M, van Oorschot M (1996) Polym Degrad Stab 51:8Google Scholar
  96. 96.
    Lacoste J, Carlsson DJ (1992) J Polym Sci Part A Polym Chem 30:493Google Scholar
  97. 97.
    de Goede S, Brüll R, Pasch H, Marshall N (2003) Macromol Symp 193:35Google Scholar
  98. 98.
    de Goede S, Brüll R, Pasch H, Marshall N (2004) e-polymers no. 012Google Scholar
  99. 99.
    de Goede E, Mallon P, Pasch H (2011) Macromol Mater Eng 296:1018Google Scholar
  100. 100.
    Pasch H, de Goede E, Mallon P (2012) Macromol Symp 312:174Google Scholar
  101. 101.
    Monrabal B (1991) Crystallization analysis fractionation. US Patent 5,222,390Google Scholar
  102. 102.
    Soares JBP, Anantawaraskul S (2005) J Polym Sci Part B Polym Phys 43:1557Google Scholar
  103. 103.
    Monrabal B, Blanco J, Nieto J, Soares JBP (1999) J Polym Sci Part A Polym Chem 37:89Google Scholar
  104. 104.
    Pasch H, Brüll R, Wahner U, Monrabal B (2000) Macromol Mater Eng 279:46Google Scholar
  105. 105.
    Wild L (1993) Trends Polym Sci 1:50Google Scholar
  106. 106.
    Karoglanian SA, Harrison IR (1996) Polym Eng Sci 36:731Google Scholar
  107. 107.
    Soares JBP, Hamiliec AE (1995) Polymer 36:1639Google Scholar
  108. 108.
    Mara JJ, Menard KP (1994) Acta Polym 45:378Google Scholar
  109. 109.
    Joskowicz PL, Munoz A, Barrera J, Mueller AJ (1995) Macromol Chem Phys 196:385Google Scholar
  110. 110.
    Brüll R, Pasch H, Raubenheimer HG, Sanderson RD, van Reenen AJ, Wahner UM (2001) Macromol Chem Phys 202:1281Google Scholar
  111. 111.
    Alamo RG, Mandelkern L (1994) Thermochim Acta 238:155Google Scholar
  112. 112.
    Arnold M, Henschke O, Knorr J (1996) Macromol Chem Phys 197:563Google Scholar
  113. 113.
    Monrabal B, del Hierro P (2011) Anal Bioanal Chem 399:1557Google Scholar
  114. 114.
    Monrabal B, Sancho-Tello J, Mayo N, Romero L (2007) Macromol Symp 257:71Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Harald Pasch
    • 1
  • Muhammad Imran Malik
    • 2
  1. 1.Department of Chemistry and Polymer ScienceUniversity of StellenboschMatielandSouth Africa
  2. 2.International Center for Chemical and Biological Sciences (ICCBS) H.E.J. Research Institute of ChemistryUniversity of KarachiKarachiPakistan

Personalised recommendations