Skip to main content

Introduction

  • Chapter
  • First Online:
  • 760 Accesses

Part of the book series: Springer Laboratory ((SPLABORATORY))

Abstract

Polyolefins are the most important and most widely used synthetic polymers; their annual production exceeds 130 million metric tons. Polyolefin production continues to grow rapidly and new polyolefin grades are constantly being introduced in the market. The interest in polyolefins continues to grow due to the fact that polyolefins are made from simple, cheap and easily accessible monomers. Polyolefins have superior properties, including excellent chemical inertness, high crystallinity resulting in excellent mechanical strength, high thermal stability and high stability against thermo-oxidative degradation. The present chapter introduces to the molecular heterogeneity of polyolefins and methods to analyse these materials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kaminsky W (2008) Macromol Chem Phys 209:459

    Article  CAS  Google Scholar 

  2. Kaminsky W, Arndt M (1997) Polymer synthesis/polymer catalysis. Springer, Berlin, p 143

    Book  Google Scholar 

  3. Seymour RB, Cheng T (eds) (1986) History of polyolefins. D. Reidel, Dordrecht, Holland

    Google Scholar 

  4. Scheirs J, Kaminsky W (2000) Metallocene-based polyolefins: preparation, properties and technology. Wiley, Hoboken, NJ

    Google Scholar 

  5. Mori S, Barth HG (1999) Size exclusion chromatography. Springer, Berlin

    Book  Google Scholar 

  6. Striegel AM, Yau WW, Kirkland JJ, Bly DD (2009) Modern size-exclusion liquid chromatography. Wiley, Hoboken, NJ

    Book  Google Scholar 

  7. Monrabal B (2013) Adv Polym Sci 257:203

    Article  Google Scholar 

  8. Sinn H, Kaminsky W (1980) Adv Organomet Chem 18:99

    CAS  Google Scholar 

  9. Kaminsky W (2004) J Polym Sci A Polym Chem 42:3911

    Article  CAS  Google Scholar 

  10. Janca J (1984) Size exclusion liquid chromatography. Marcel Dekker, New York, NY

    Google Scholar 

  11. Yau WW, Kirkland JJ, Bly DD (1979) Modern size exclusion chromatography. Wiley, New York, NY

    Google Scholar 

  12. Tribe K, Saunders G, Meißner R (2006) Macromol Symp 236:228

    Article  CAS  Google Scholar 

  13. Piel C, Jannesson E, Qvist A (2009) Macromol Symp 282:41

    Article  CAS  Google Scholar 

  14. Liu MX, Dwyer JL (1996) Appl Spectrosc 50:349

    Article  CAS  Google Scholar 

  15. Harding GH, van Reenen AJ (2006) Macromol Chem Phys 207:1680

    Article  CAS  Google Scholar 

  16. Soares JBP, Hamielec AE (1995) Polymer 36:1639

    Article  CAS  Google Scholar 

  17. Soares JBP, Anatawarskul S, Adams PMW (2005) Adv Polym Sci 182:1

    Article  Google Scholar 

  18. Kissin YV, Fruitwala HA (2007) J Appl Polym Sci 106:3872

    Article  CAS  Google Scholar 

  19. Pasch H, Brüll R, Wahner U, Monrabal B (2000) Macromol Mater Eng 279:46

    Article  CAS  Google Scholar 

  20. Monrabal B, Sancho-Tello J, Mayo N, Romero L (2007) Macromol Symp 257:71

    Article  CAS  Google Scholar 

  21. van Reenen AJ, Brand M, Rohwer E, Walters P (2009) Macromol Symp 282:25

    Article  Google Scholar 

  22. Alghyamah AA, Soares JBP (2009) Macromol Symp 285:8

    Article  Google Scholar 

  23. Wang W, Kharchenko S, Migler K, Zhu S (2004) Polymer 45:6495

    Article  CAS  Google Scholar 

  24. Yau WW, Gillespie D (2001) Polymer 42:8947

    Article  CAS  Google Scholar 

  25. Gabriel C, Lilge D (2001) Polymer 42:297

    Article  CAS  Google Scholar 

  26. Starck P, Lehmus P, Seppälä JV (1990) Polym Eng Sci 39:1444

    Article  Google Scholar 

  27. Hiller W, Pasch H, Macko T, Hofmann M, Ganz J, Spraul M, Braumann U, Streck R, Mason J, van Damme F (2006) J Magn Reson 183:290

    Article  CAS  Google Scholar 

  28. de Goede E, Mallon P, Pasch H (2010) Macromol Mater Eng 295:366

    Article  Google Scholar 

  29. Albrecht A, Heinz LC, Lilge D, Pasch H (2007) Macromol Symp 257:46

    Article  CAS  Google Scholar 

  30. Macko T, Brüll R, Zhu Y, Wang Y (2010) J Sep Sci 33:3446

    Article  CAS  Google Scholar 

  31. Mathot VBF (1994) The crystallization and melting region. In: Mathot VBF (ed) Calorimetry and thermal analysis of polymers. Hanser Publishers, Munich, Chapter 9

    Google Scholar 

  32. Krumme A, Basiura M, Pijpers T, Poel GV, Heinz LC, Brüll R, Mathot VBF (2011) Mater Sci Eng 17:260

    Google Scholar 

  33. Poel GV, Mathot VBF (2007) Thermochim Acta 461:107

    Article  Google Scholar 

  34. Pasch H, Trathnigg B (2013) Multidimensional HPLC of polymers. Springer, Berlin

    Book  Google Scholar 

  35. Heinz LC, Pasch H (2005) Polymer 46:12040

    Article  CAS  Google Scholar 

  36. Macko T, Pasch H, Brüll R (2006) J Chromatogr A 1115:81

    Article  CAS  Google Scholar 

  37. Macko T, Denayer JF, Pasch H, Baron GV (2003) J Sep Sci 26:1569

    Article  CAS  Google Scholar 

  38. Macko T, Pasch H (2009) Macromolecules 42:6063

    Article  CAS  Google Scholar 

  39. Pereira LJ (2008) J Liq Chromatogr Rel Tech 31:1687

    Article  CAS  Google Scholar 

  40. Macko T, Brüll R, Alamo G, Thomann Y, Grumel V (2009) Polymer 50:5443

    Article  CAS  Google Scholar 

  41. Macko T, Cutillo F, Busico V, Brüll R (2010) Macromol Symp 298:182

    Article  CAS  Google Scholar 

  42. Dolle V, Albrecht A, Brüll R, Macko T (2011) Macromol Chem Phys 212:959

    Article  CAS  Google Scholar 

  43. Chitta R, Macko T, Brüll R, Doremaele GV, Heinz LC (2011) J Polym Sci A Polym Chem 49:1840

    Article  CAS  Google Scholar 

  44. Macko T, Brüll R, Alamo RG, Stadler FJ, Losio S (2011) Anal Bioanal Chem 399:1547

    Article  CAS  Google Scholar 

  45. Cong R, deGroot W, Parrott A, Yau W, Hazlitt L, Brown R, Miller M, Zhou Z (2011) Macromolecules 44:3062

    Article  CAS  Google Scholar 

  46. Ginzburg A, Macko T, Dolle V, Brüll R (2010) J Chromatogr A 1217:6867

    Article  CAS  Google Scholar 

  47. Roy A, Miller MD, Meunier DM, de Groot AW, Winniford WL, van Damme FA, Pell RJ, Lyons JW (2010) Macromolecules 43:3710

    Article  CAS  Google Scholar 

  48. Ginzburg A, Macko T, Dolle V, Brüll R (2011) Eur Polym J 47:319

    Article  CAS  Google Scholar 

  49. Chitta R, Ginzburg A, Doremaele G, Macko T, Brüll R (2011) Polymer 52:5953

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pasch, H., Malik, M.I. (2014). Introduction. In: Advanced Separation Techniques for Polyolefins. Springer Laboratory. Springer, Cham. https://doi.org/10.1007/978-3-319-08632-3_1

Download citation

Publish with us

Policies and ethics