• Harald Pasch
  • Muhammad Imran Malik
Part of the Springer Laboratory book series (SPLABORATORY)


Polyolefins are the most important and most widely used synthetic polymers; their annual production exceeds 130 million metric tons. Polyolefin production continues to grow rapidly and new polyolefin grades are constantly being introduced in the market. The interest in polyolefins continues to grow due to the fact that polyolefins are made from simple, cheap and easily accessible monomers. Polyolefins have superior properties, including excellent chemical inertness, high crystallinity resulting in excellent mechanical strength, high thermal stability and high stability against thermo-oxidative degradation. The present chapter introduces to the molecular heterogeneity of polyolefins and methods to analyse these materials.


Molar Mass Size Exclusion Chromatography Molar Mass Distribution Long Chain Branch Temperature Rise Elution Fractionation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kaminsky W (2008) Macromol Chem Phys 209:459CrossRefGoogle Scholar
  2. 2.
    Kaminsky W, Arndt M (1997) Polymer synthesis/polymer catalysis. Springer, Berlin, p 143CrossRefGoogle Scholar
  3. 3.
    Seymour RB, Cheng T (eds) (1986) History of polyolefins. D. Reidel, Dordrecht, HollandGoogle Scholar
  4. 4.
    Scheirs J, Kaminsky W (2000) Metallocene-based polyolefins: preparation, properties and technology. Wiley, Hoboken, NJGoogle Scholar
  5. 5.
    Mori S, Barth HG (1999) Size exclusion chromatography. Springer, BerlinCrossRefGoogle Scholar
  6. 6.
    Striegel AM, Yau WW, Kirkland JJ, Bly DD (2009) Modern size-exclusion liquid chromatography. Wiley, Hoboken, NJCrossRefGoogle Scholar
  7. 7.
    Monrabal B (2013) Adv Polym Sci 257:203CrossRefGoogle Scholar
  8. 8.
    Sinn H, Kaminsky W (1980) Adv Organomet Chem 18:99Google Scholar
  9. 9.
    Kaminsky W (2004) J Polym Sci A Polym Chem 42:3911CrossRefGoogle Scholar
  10. 10.
    Janca J (1984) Size exclusion liquid chromatography. Marcel Dekker, New York, NYGoogle Scholar
  11. 11.
    Yau WW, Kirkland JJ, Bly DD (1979) Modern size exclusion chromatography. Wiley, New York, NYGoogle Scholar
  12. 12.
    Tribe K, Saunders G, Meißner R (2006) Macromol Symp 236:228CrossRefGoogle Scholar
  13. 13.
    Piel C, Jannesson E, Qvist A (2009) Macromol Symp 282:41CrossRefGoogle Scholar
  14. 14.
    Liu MX, Dwyer JL (1996) Appl Spectrosc 50:349CrossRefGoogle Scholar
  15. 15.
    Harding GH, van Reenen AJ (2006) Macromol Chem Phys 207:1680CrossRefGoogle Scholar
  16. 16.
    Soares JBP, Hamielec AE (1995) Polymer 36:1639CrossRefGoogle Scholar
  17. 17.
    Soares JBP, Anatawarskul S, Adams PMW (2005) Adv Polym Sci 182:1CrossRefGoogle Scholar
  18. 18.
    Kissin YV, Fruitwala HA (2007) J Appl Polym Sci 106:3872CrossRefGoogle Scholar
  19. 19.
    Pasch H, Brüll R, Wahner U, Monrabal B (2000) Macromol Mater Eng 279:46CrossRefGoogle Scholar
  20. 20.
    Monrabal B, Sancho-Tello J, Mayo N, Romero L (2007) Macromol Symp 257:71CrossRefGoogle Scholar
  21. 21.
    van Reenen AJ, Brand M, Rohwer E, Walters P (2009) Macromol Symp 282:25CrossRefGoogle Scholar
  22. 22.
    Alghyamah AA, Soares JBP (2009) Macromol Symp 285:8CrossRefGoogle Scholar
  23. 23.
    Wang W, Kharchenko S, Migler K, Zhu S (2004) Polymer 45:6495CrossRefGoogle Scholar
  24. 24.
    Yau WW, Gillespie D (2001) Polymer 42:8947CrossRefGoogle Scholar
  25. 25.
    Gabriel C, Lilge D (2001) Polymer 42:297CrossRefGoogle Scholar
  26. 26.
    Starck P, Lehmus P, Seppälä JV (1990) Polym Eng Sci 39:1444CrossRefGoogle Scholar
  27. 27.
    Hiller W, Pasch H, Macko T, Hofmann M, Ganz J, Spraul M, Braumann U, Streck R, Mason J, van Damme F (2006) J Magn Reson 183:290CrossRefGoogle Scholar
  28. 28.
    de Goede E, Mallon P, Pasch H (2010) Macromol Mater Eng 295:366CrossRefGoogle Scholar
  29. 29.
    Albrecht A, Heinz LC, Lilge D, Pasch H (2007) Macromol Symp 257:46CrossRefGoogle Scholar
  30. 30.
    Macko T, Brüll R, Zhu Y, Wang Y (2010) J Sep Sci 33:3446CrossRefGoogle Scholar
  31. 31.
    Mathot VBF (1994) The crystallization and melting region. In: Mathot VBF (ed) Calorimetry and thermal analysis of polymers. Hanser Publishers, Munich, Chapter 9Google Scholar
  32. 32.
    Krumme A, Basiura M, Pijpers T, Poel GV, Heinz LC, Brüll R, Mathot VBF (2011) Mater Sci Eng 17:260Google Scholar
  33. 33.
    Poel GV, Mathot VBF (2007) Thermochim Acta 461:107CrossRefGoogle Scholar
  34. 34.
    Pasch H, Trathnigg B (2013) Multidimensional HPLC of polymers. Springer, BerlinCrossRefGoogle Scholar
  35. 35.
    Heinz LC, Pasch H (2005) Polymer 46:12040CrossRefGoogle Scholar
  36. 36.
    Macko T, Pasch H, Brüll R (2006) J Chromatogr A 1115:81CrossRefGoogle Scholar
  37. 37.
    Macko T, Denayer JF, Pasch H, Baron GV (2003) J Sep Sci 26:1569CrossRefGoogle Scholar
  38. 38.
    Macko T, Pasch H (2009) Macromolecules 42:6063CrossRefGoogle Scholar
  39. 39.
    Pereira LJ (2008) J Liq Chromatogr Rel Tech 31:1687CrossRefGoogle Scholar
  40. 40.
    Macko T, Brüll R, Alamo G, Thomann Y, Grumel V (2009) Polymer 50:5443CrossRefGoogle Scholar
  41. 41.
    Macko T, Cutillo F, Busico V, Brüll R (2010) Macromol Symp 298:182CrossRefGoogle Scholar
  42. 42.
    Dolle V, Albrecht A, Brüll R, Macko T (2011) Macromol Chem Phys 212:959CrossRefGoogle Scholar
  43. 43.
    Chitta R, Macko T, Brüll R, Doremaele GV, Heinz LC (2011) J Polym Sci A Polym Chem 49:1840CrossRefGoogle Scholar
  44. 44.
    Macko T, Brüll R, Alamo RG, Stadler FJ, Losio S (2011) Anal Bioanal Chem 399:1547CrossRefGoogle Scholar
  45. 45.
    Cong R, deGroot W, Parrott A, Yau W, Hazlitt L, Brown R, Miller M, Zhou Z (2011) Macromolecules 44:3062CrossRefGoogle Scholar
  46. 46.
    Ginzburg A, Macko T, Dolle V, Brüll R (2010) J Chromatogr A 1217:6867CrossRefGoogle Scholar
  47. 47.
    Roy A, Miller MD, Meunier DM, de Groot AW, Winniford WL, van Damme FA, Pell RJ, Lyons JW (2010) Macromolecules 43:3710CrossRefGoogle Scholar
  48. 48.
    Ginzburg A, Macko T, Dolle V, Brüll R (2011) Eur Polym J 47:319CrossRefGoogle Scholar
  49. 49.
    Chitta R, Ginzburg A, Doremaele G, Macko T, Brüll R (2011) Polymer 52:5953CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Harald Pasch
    • 1
  • Muhammad Imran Malik
    • 2
  1. 1.Department of Chemistry and Polymer ScienceUniversity of StellenboschMatielandSouth Africa
  2. 2.International Center for Chemical and Biological Sciences (ICCBS) H.E.J. Research Institute of ChemistryUniversity of KarachiKarachiPakistan

Personalised recommendations