Skip to main content

Solution, Stability and Realization of Fractional Order Differential Equation

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 317))

Abstract

Classical calculus has provided an efficient tool for modeling and exploring the properties of the dynamical system problems concerning of physics, biology, engineering and applied sciences.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Anatoly, A.K., Srivastava, H.M., Trujillo, J.J.: Theory and applications of fractional differential equations, vol. 204 (2006)

    Google Scholar 

  2. Podlubny, I.: Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, vol. 198. Access Online via Elsevier (1998)

    Google Scholar 

  3. Du, M., Wang, Z.: Initialized fractional differential equations with riemann-liouville fractional-order derivative. Eur. Phys. J. Spec. Top. 193(1), 49–60 (2011)

    Article  Google Scholar 

  4. Li, Y., Chen, Y., Podlubny, I.: Mittag-leffler stability of fractional order nonlinear dynamic systems. Automatica 45(8), 1965–1969 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Li, C., Zhang, F.: A survey on the stability of fractional differential equations. Eur. Phys. J. Spec. Top. 193(1), 27–47 (2011)

    Article  Google Scholar 

  6. Sabatier, J., Moze, M., Farges, C.: Lmi stability conditions for fractional order systems. Comput. Math. Appl. 59(5), 1594–1609 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  7. Hartley, T.T., Lorenzo, C.F.: A solution to the fundamental linear fractional order differential equation. NASA Lewis Research Center (1998)

    Google Scholar 

  8. Raynaud, H.F., Zergaınoh, A.: State-space representation for fractional order controllers. Automatica 36(7), 1017–1021 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chen, Y., Vinagre, B.M.: Fractional-Order Systems and Controls: Fundamentals and Applications. Springer, Berlin (2010)

    Google Scholar 

  10. Petráš, I.: Stability of fractional-order systems with rational orders: a survey. Fractional Calc. Appl. Anal. 12(3), 269–298 (2009)

    MATH  Google Scholar 

  11. Ahn, H.S., Chen, Y., Podlubny, I.: Robust stability test of a class of linear time-invariant interval fractional-order system using lyapunov inequality. Appl. Math. Comput. 187(1), 27–34 (2007)

    Google Scholar 

  12. Ahn, H.S., Chen, Y.: Necessary and sufficient stability condition of fractional-order interval linear systems. Automatica 44(11), 2985–2988 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Balochian, S., Sedigh, A.K., Haeri, M.: Stabilization of fractional order systems using a finite number of state feedback laws. Nonlinear Dyn. 66(1–2), 141–152 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. Boyd, S.P., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear matrix inequalities in system and control theory, vol. 15. SIAM (1994)

    Google Scholar 

  15. Lu, J.G., Chen, Y.Q.: Robust stability and stabilization of fractional-order interval systems with the fractional order: The case. IEEE Trans. Autom. Control. 55(1), 152–158 (2010)

    Article  Google Scholar 

  16. Li, Y., Chen, Y., Podlubny, I.: Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized mittag-leffler stability. Comput. Math. Appl. 59(5), 1810–1821 (2010)

    Google Scholar 

  17. Bode, H.: Relations between attenuation and phase in feedback amplifier design. Bell Syst. Tech. J. 19, 421–454 (1940)

    Article  Google Scholar 

  18. Bode, H.W.: Network Analysis and Feedback Amplifier Design. Van Nostrand Reinhold, New York (1956)

    Google Scholar 

  19. Manabe, S.: The non-integer integral and its application to control systems. ETJ of Japan 6(3–4), 83–87 (1961)

    Google Scholar 

  20. Barbosa, R.S., Machado, J.T., Ferreira, I.M.: A fractional calculus perspective of pid tuning. In: the Proceedings of the ASME International 19th Biennial Conference on Mechanical Vibration and Noise (VIB’03), Chicago, Illinois (2003)

    Google Scholar 

  21. Podlubny, I.: Fractional-order systems and pi/sup/spl lambda//d/sup/spl mu//-controllers. IEEE Trans. Autom. Control. 44(1), 208–214 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  22. Oustaloup, A.: From fractality to non integer derivation through recursivity, a property common to these two concepts: A fundamental idea for a new process control strategy. In: Proceedings of the 12th IMACS World Congress, vol. 3, pp. 203–208 (1988)

    Google Scholar 

  23. Oustaloup, A., Sabatier, J., Lanusse, P., et al.: From fractal robustness to crone control. Fractional Calc. Appl. Anal. 2(1), 1–30 (1999)

    MATH  MathSciNet  Google Scholar 

  24. Oustaloup, A., Melchior, P., Lanusse, P., Cois, O., Dancla, F.: The crone toolbox for matlab. In: Computer-Aided Control System Design, 2000. CACSD 2000. IEEE International Symposium on, pp. 190–195. IEEE (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bijnan Bandyopadhyay .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bandyopadhyay, B., Kamal, S. (2015). Solution, Stability and Realization of Fractional Order Differential Equation. In: Stabilization and Control of Fractional Order Systems: A Sliding Mode Approach. Lecture Notes in Electrical Engineering, vol 317. Springer, Cham. https://doi.org/10.1007/978-3-319-08621-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08621-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08620-0

  • Online ISBN: 978-3-319-08621-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics