Skip to main content

Essence of Fractional Order Calculus, Physical Interpretation and Applications

  • Chapter
  • First Online:
Stabilization and Control of Fractional Order Systems: A Sliding Mode Approach

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 317))

Abstract

In the understanding and development of large class of systems it is now a well realized and accepted fact that the researchers have taken their initiation from nature. Natural things can be well understood in two possible ways viz. quantitative and qualitative.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mandelbrot, B.B.: The Fractal Geometry of Nature. Freeman and Co., San Francisco (1982)

    Google Scholar 

  2. Anatoly, A.K., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, vol. 204, Elsevier, New York (2006)

    Google Scholar 

  3. Ross, B.: Origins of fractional calculus and some applications. Int. J. Math. Statist. Sci 1(1), 21–34 (1992)

    MATH  Google Scholar 

  4. Folland, G.B.: Advanced Calculus. Pearson Education India, Delhi (2002)

    Google Scholar 

  5. Vinagre, B.M., Chen, Y.Q.: Fractional calculus applications in automatic control and robotics. 41st IEEE CDC2002 Tutorial Workshop

    Google Scholar 

  6. Podlubny, I.: Fractional-order systems and pi/sup/spl lambda//d/sup/spl mu//-controllers. IEEE Trans. Autom. Control 44(1), 208–214 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Vinagre, B.M., Petráš, I., Podlubny, I., Chen, Y.Q.: Using fractional order adjustment rules and fractional order reference models in model-reference adaptive control. Nonlinear Dyn. 29(1–4), 269–279 (2002)

    Article  MATH  Google Scholar 

  8. Li, Y., Chen, Y., Podlubny, I.: Mittag-Leffler stability of fractional order nonlinear dynamic systems. Automatica 45(8), 1965–1969 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Li, C.P., Zhao, Z.G.: Introduction to fractional integrability and differentiability. Eur. Phys. J. Spec. Top. 193(1), 5–26 (2011)

    Google Scholar 

  10. Li, C., Qian, D., Chen, Y.: On Riemann-Liouville and caputo derivatives. Discrete Dyn. Nat. Soc., 562494, pp. 1–15 (2011)

    Google Scholar 

  11. Kolwankar, K.M., Gangal, A.D.: Fractional differentiability of nowhere differentiable functions and dimensions. Chaos: an Interdisciplinary. J. Nonlinear Sci. 6(4), 505–513 (1996)

    MATH  MathSciNet  Google Scholar 

  12. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, vol. 198, Access Online via Elsevier (1998)

    Google Scholar 

  13. Zhang, X., Chen, Y.Q.: Remarks on fractional order control systems. In: American Control Conference (ACC), IEEE, 2012, pp. 5169–5173. (2012)

    Google Scholar 

  14. Oldham, K.B., Spanier, J.: The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order, vol. 111, Academic Press, New York (1974)

    Google Scholar 

  15. Oldham, K.B., Zoski, C.G.: Analogue instrumentation for processing polarographic data. J. Electroanal. Chem. Interfacial Electrochem. 157(1), 27–51 (1983)

    Google Scholar 

  16. Wall, H.S.: Analytic Theory of Continued Fractions. New York: Chelsea (1948)

    Google Scholar 

  17. Machado, J.A.T.: A probabilistic interpretation of the fractional-order differentiation. Fractional Calc. Appl. Anal. 6(1), 73–80 (2003)

    MATH  Google Scholar 

  18. Moshrefi-Torbati, M., Hammond, J.K.: Physical and geometrical interpretation of fractional operators. J. Frankl. Inst. 335(6), 1077–1086 (1998)

    Article  MathSciNet  Google Scholar 

  19. Podlubny, I.: Geometric and physical interpretation of fractional integration and fractional differentiation. arXiv preprint math/0110241 (2001)

  20. Gorenflo, R.: Abel integral equations with special emphasis on applications. Lectures in Mathematical Sciences 13 (1996)

    Google Scholar 

  21. Debnath, L.: A brief historical introduction to fractional calculus. Int. J. Math. Educ. Sci. Technol. 35(4), 487–501 (2004)

    Article  MathSciNet  Google Scholar 

  22. David, S., Linares, J., Pallone, E.: Fractional order calculus: historical apologia, basic concepts and some applications. Revista Brasileira de Ensino de Física 33(4), 4302–4302 (2011)

    Article  Google Scholar 

  23. O’Connor, W.J.: Control of flexible mechanical systems: wave-based techniques. In: American Control Conference, 2007. ACC’07, IEEE, pp. 4192–4202 (2007)

    Google Scholar 

  24. Torvik, P.J., Bagley, R.L.: On the appearance of the fractional derivative in the behavior of real materials. J. Appl. Mech. 51(2), 294–298 (1984)

    Article  MATH  Google Scholar 

  25. Bonilla, B., Rivero, M., Trujillo, J.J.: On systems of linear fractional differential equations with constant coefficients. Appl. Math. Comput. 187(1), 68–78 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  26. Sierociuk, D., Podlubny, I., Petras, I.: Experimental evidence of variable-order behavior of ladders and nested ladders. IEEE Trans. Control Syst. Technol. 21(2), 459–466 (2013)

    Article  Google Scholar 

  27. Li, C., Deng, W.: Remarks on fractional derivatives. Appl. Math. Comput. 187(2), 777–784 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  28. Debnath, L.: Recent applications of fractional calculus to science and engineering. Int. J. Math. Math. Sci. 2003(54), 3413–3442 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  29. Ma, C., Hori, Y.: Fractional-order control: theory and applications in motion control. IEEE Ind. Electron. Mag. 1(4), 6–16 (2007)

    Article  Google Scholar 

  30. Sánchez, Y.: Fractional-pid control for active reduction of vertical tail buffeting. Technical Report (1999)

    Google Scholar 

  31. Oustaloup, A., Mathieu, B., Lanusse, P.: The crone control of resonant plants: application to a flexible transmission. Eur. J. Control 1(2), 113–121 (1995)

    Article  Google Scholar 

  32. Lanusse, P., Poinot, T., Cois, O., Oustaloup, A., Trigeassou, J.: Tuning of an active suspension system using a fractional controller and a closed-loop tuning. In: 11th International Conference on Advanced Robotics, pp. 258–263 (2003)

    Google Scholar 

  33. Calderón, A., Vinagre, B., Feliu, V.: Linear fractional order control of a dc-dc buck converter. In: ECC 2003: European control conference (2003)

    Google Scholar 

  34. Pommier-Budinger, V., Musset, R., Lanusse, P., Oustaloup, A.: Study of two robust controls for an hydraulic actuator. In: European Control Conference, Cambridge, UK, pp.1–4 (2003)

    Google Scholar 

  35. Monje, C., Ramos, F., Feliu, V., Vinagre, B.: Tip position control of a lightweight flexible manipulator using a fractional order controller. IET Control Theory Appl. 1(5), 1451–1460 (2007)

    Article  Google Scholar 

  36. Ferreira, N.F., Machado, J.T.: Fractional-order hybrid control of robotic manipulators. In: Proceedings of the 11th International Conference on Advanced Robotics, vol. 398, IEEE Press, Piscataway (2003)

    Google Scholar 

  37. Vinagre, B., Petras, I., Merchan, P., Dorcak, L.: Two digital realizations of fractional controllers: Application to temperature control of a solid. In: Proceedings of the European Control Conference (ECC2001), Porto, pp. 1764–1767 (2001)

    Google Scholar 

  38. Petráš, I., Vinagre, B.M.: Practical application of digital fractional-order controller to temperature control. Acta Montan Slovaca 7(2), 131–137 (2002)

    Google Scholar 

  39. Petráš, I., Vinagre, B.M., Dorčák, L., Feliu, V.: Fractional digital control of a heat solid–experimental results. In: International Carpathian Control Conference, Malenovice, pp. 365–370 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bijnan Bandyopadhyay .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bandyopadhyay, B., Kamal, S. (2015). Essence of Fractional Order Calculus, Physical Interpretation and Applications. In: Stabilization and Control of Fractional Order Systems: A Sliding Mode Approach. Lecture Notes in Electrical Engineering, vol 317. Springer, Cham. https://doi.org/10.1007/978-3-319-08621-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08621-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08620-0

  • Online ISBN: 978-3-319-08621-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics