Random Sets as Ill-Perceived Random Variables

  • Inés CousoEmail author
  • Didier Dubois
  • Luciano Sánchez
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)


The modern theory of random sets was initiated in the seventies, independently by Kendall [30] and Matheron [37] and it has been fruitfully applied in different fields such as economy, stochastic geometry and ill-observed random objects. Roughly speaking, a random set is a random element in a family of subsets of a certain universe. In particular, we can compute the probabilities that a random set hits a given set, or is included in this set, or yet includes it. In parallel and quite independently of this literature, random sets appear (but for the name) in the late sixties in the pioneering works of Dempster [16], who considers multimappings from a probability space to another space of interest.


Probability Measure Multivalued Mapping Evidence Theory Measurable Selection Final Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    J. Aumann, Integral of set valued functions. J. Math. Anal. Appl. 12, 1–12 (1965)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    S. Bochner, Integration von Funktionen, deren Werte die Elemente eines Vectorraumes sind. Fundam. Math. 20, 262–276 (1933)Google Scholar
  3. 3.
    C. Castaing, M. Valadier, Convex Analysis and Measurable Multifunctions (Springer, Berlin, 1977)CrossRefzbMATHGoogle Scholar
  4. 4.
    A. Castaldo, F. Maccheroni, M. Marinacci, Random correspondences as bundles of random variables. Sankhya Ind. J. Stat. 66, 409–427 (2004)zbMATHMathSciNetGoogle Scholar
  5. 5.
    G. Choquet, Theory of capacities. Annales de l’Institut Fourier. University of Grenoble 5, 131–295 (1953)CrossRefMathSciNetGoogle Scholar
  6. 6.
    G. de Cooman, D. Aeyels, Supremum preserving upper probabilities. Inf. Sci. 118, 173–212 (1999)CrossRefzbMATHGoogle Scholar
  7. 7.
    I. Couso, in Teoría de la probabilidad para datos imprecisos. Algunos aspectos. Ph.D. thesis, University of Oviedo, 1999 (in Spanish)Google Scholar
  8. 8.
    I. Couso, D. Dubois, On the variability of the concept of variance for fuzzy random variables of variance. IEEE Trans. Fuzzy Syst. 17, 1070–1080 (2009)CrossRefGoogle Scholar
  9. 9.
    I. Couso, D. Dubois, Statistical reasoning with set-valued information: ontic versus epistemic views. Int. J. Approximate Reasoning (2014). doi: 10.1016/j.ijar.2013.07.002
  10. 10.
    I. Couso, S. Moral, Independence concepts in evidence theory. Int. J. Approximate Reasoning 51, 748–758 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    I. Couso, S. Moral, P. Walley, A survey of concepts of independence for imprecise probabilities. Risk Decis Policy 5, 165–181 (2000)CrossRefGoogle Scholar
  12. 12.
    I. Couso, L. Sánchez, P. Gil, Imprecise distribution function associated to a random set. Inf. Sci. 159, 109–123 (2004)CrossRefzbMATHGoogle Scholar
  13. 13.
    I. Couso, L. Sánchez, Higher order models for fuzzy random variables. Fuzzy Sets Syst. 159, 237–258 (2008)CrossRefzbMATHGoogle Scholar
  14. 14.
    L.M. de Campos, M.T. Lamata, S. Moral, The concept of conditional fuzzy measure. Int. J. Intell. Syst. 5, 237–246 (1990)CrossRefzbMATHGoogle Scholar
  15. 15.
    G. Debreu, Integration of correspondences, in Proceedings of the Fifth Berkeley Symposium of Mathematical Statistics and Probability (Berkeley, USA, 1965), pp. 351–372Google Scholar
  16. 16.
    A.P. Dempster, Upper and lower probabilities induced by a multi-valued mapping. Ann. Math. Stat. 38, 325–339 (1967)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    D. Denneberg, Non-additive Measure and Integral (Kluwer Academic Publishers, Dordretch, 1994)CrossRefzbMATHGoogle Scholar
  18. 18.
    D. Dubois, Possibility theory and statistical reasoning. Comput. Stat. Data Anal. 51, 47–69 (2006)CrossRefzbMATHGoogle Scholar
  19. 19.
    D. Dubois, H. Prade, Possibility Theory (Plenum Press, New York, 1988)CrossRefzbMATHGoogle Scholar
  20. 20.
    D. Dubois, H. Prade, Formal representations of uncertainty, in Decision-Making Process Concepts and Methods, ed. by D. Bouyssou, D. Dubois, M. Pirlot, H. Prade (ISTE & Wiley, London, 2009)Google Scholar
  21. 21.
    D. Dubois, H. Prade, Gradualness, uncertainty and bipolarity: making sense of fuzzy sets. Fuzzy Sets Syst 192, 3–24 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    R. Fagin, J.Y. Halpern, A new approach to updating beliefs, in Uncertainty in Artificial Intelligence, ed. by P.P. Bonissone, M. Henrion, L.N. Kanal, J.F. Lemmer (1991)Google Scholar
  23. 23.
    Y. Feng, L. Hu, H. Shu, The variance and covariance of fuzzy random variables and their applications. Fuzzy Sets Syst. 120, 487–497 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    I. Gilboa, D. Schmeidler, Updating ambiguous beliefs. J. Econ. Theory 59, 33–49 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    I.R. Goodman, H.T. Nguyen, Uncertainty Models for Knowledge-Based Systems (Elsevier Science Publishers, Amsterdam, 1985)zbMATHGoogle Scholar
  26. 26.
    C. Hess, Mesurabilité, convergence et approximation des multi-fonctions à valeurs dans un e.l.c.s., Technical Report 15, Séminaire d’Analyse Convexe, Université du Languedoc, Montpellier, France, 1985. Exp 9, 100 ppGoogle Scholar
  27. 27.
    W. Hildenbrand, Core and Equilibria of a Large Economy (Princeton University Press, Princeton, 1974)zbMATHGoogle Scholar
  28. 28.
    C.J. Himmelberg, Measurable relations. Fund. Math. 87, 53–72 (1975)zbMATHMathSciNetGoogle Scholar
  29. 29.
    J.Y. Jaffray, Bayesian updating and belief functions. IEEE Trans. Syst. Man Cybern. 22, 1144–1152 (1992)Google Scholar
  30. 30.
    D.G. Kendall, Foundations of a theory of random sets, in Stochastic Geometry, ed. by E.F. Harding, D.G. Kendall (Wiley, New York, 1974), pp. 322–376Google Scholar
  31. 31.
    R. Körner, On the variance of fuzzy random variables. Fuzzy Sets Syst. 92, 83–93 (1997)CrossRefzbMATHGoogle Scholar
  32. 32.
    R. Kruse, On the variance of random sets. J. Math. Anal. Appl. 122, 469–473 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    R. Kruse, K.D. Meyer, Statistics with Vague Data (D. Reidel Publishing Company, Dordrecht, 1987)CrossRefzbMATHGoogle Scholar
  34. 34.
    M.A. Lubiano, Variation measures for imprecise random elements, Ph.D. thesis, University of Oviedo, 1999 (in Spanish)Google Scholar
  35. 35.
    N. Lusin, Leçons sur les ensembles analytiques et leurs applications (Chelsea, New York, 1930)zbMATHGoogle Scholar
  36. 36.
    J. Ma, W. Liu, D. Dubois, H. Prade, Bridging Jeffrey’s rule, AGM revision and Dempster conditioning in the theory of evidence. Int. J. Artif. Intell. Tools 20(4): 691–720 (2011)Google Scholar
  37. 37.
    G. Matheron, Random Sets and Integral Geometry (Wiley, New York, 1975)zbMATHGoogle Scholar
  38. 38.
    E. Miranda, I. Couso, P. Gil, Relationships between possibility measures and nested random sets. Inf. Sci. 10, 1–15 (2002)zbMATHMathSciNetGoogle Scholar
  39. 39.
    E. Miranda, I. Couso, P. Gil, Random sets as imprecise random variables. J. Math. Anal. Appl. 307, 32–47 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  40. 40.
    E. Miranda, I. Couso, P. Gil, Random intervals as a model for imprecise information. Fuzzy Sets Syst. 154, 386–412 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  41. 41.
    E. Miranda, I. Couso, P. Gil, Approximation of upper and lower probabilities by measurable selections. Inf. Sci. 180, 1407–1417 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  42. 42.
    I. Molchanov, Limit Theorems for Unions of Random Closed Sets. Lecture Notes in Mathematics, vol. 1561 (Springer, Berlin, 1993)Google Scholar
  43. 43.
    I. Molchanov, Theory of Random Sets (Springer, London, 2005)zbMATHGoogle Scholar
  44. 44.
    H.T. Nguyen, On random sets and belief functions. J. Math. Anal. Appl. 63, 531–542 (1978)CrossRefGoogle Scholar
  45. 45.
    P. Novikov, Sur les fonctions implicites mesurables B. Fund. Math. 17, 8–25 (1931)zbMATHGoogle Scholar
  46. 46.
    J. Paris, The Uncertain Reasoner’s Companion (Cambridge University Press, Cambridge, 1994)zbMATHGoogle Scholar
  47. 47.
    G. Shafer, A Mathematical Theory of Evidence (Princeton University Press, Princeton, 1976)zbMATHGoogle Scholar
  48. 48.
    D. Stoyan, W.S. Kendall, J. Mecke, Stochastic Geometry and its Applications (Wiley, Chichester, 1995)zbMATHGoogle Scholar
  49. 49.
    P. Walley, Statistical Reasoning with Imprecise Probabilities (Chapman and Hall, London, 1991)CrossRefzbMATHGoogle Scholar
  50. 50.
    R. Yager, L.-P. Liu (eds.), Classic Works of the Dempster–Shafer Theory of Belief Functions, vol. 219, Studies in Fuzziness and Soft Computing (Springer, Berlin, 2008)zbMATHGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Departamento de Estadística e I. O. y D. M.Universidad de OviedoOviedoSpain
  2. 2.IRIT, CNRSUniversité Paul SabatierToulouse Cedex 09France
  3. 3.Departamento de InformáticaUniversidad de OviedoOviedoSpain

Personalised recommendations