Advertisement

Mining the Association of Multiple Virtual Identities Based on Multi-Agent Interaction

  • Le Li
  • Weidong Xiao
  • Changhua Dai
  • Haiming Tong
  • Zhiqiang Song
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8506)

Abstract

Abuses of online anonymity make identity tracing a critical problem in cybercrime investigation. To solve this problem, this paper focuses on the feature of authors’ behavior in time slices and tries to mine the association of multiple virtual identities based on multi-agent interaction. We propose the recognition model MVIA-K based on knowledge management. In MVIA-K, agents perform distributed mining to get candidate author groups as local knowledge in each time slice. Then high-quality knowledge is extracted from the local knowledge and used as priori knowledge to guide other agents’ mining process. Finally distributed knowledge is integrated on the basis of knowledge scale. Experiment with real-world dataset shows that MVIA-K has a very promising performance, which can filter the noise data effectively and outperform Author Topic model.

Keywords

Virtual identities time slice multi-agent text mining 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abbasi, A., Chen, H.: Writeprints: A stylometric approach to identity-level identification and similarity detection in cyberspace. ACM Transactions on Information Systems (TOIS) 26(2), 7 (2008)CrossRefGoogle Scholar
  2. 2.
    Airoldi, E., Malin, B.: Data mining challenges for electronic safety: The case of fraudulent intent detection in e-mails. In: Proceedings of the Workshop on Privacy and Security Aspects of Data Mining, pp. 57–66 (2004)Google Scholar
  3. 3.
    Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. The Journal of Machine Learning Research 3, 993–1022 (2003)zbMATHGoogle Scholar
  4. 4.
    Chen, C., Wu, K., Srinivasan, V., Zhang, X.: Battling the internet water army: Detection of hidden paid posters. arXiv preprint arXiv:1111.4297 (2011)Google Scholar
  5. 5.
    Chun, W.C.: The knowing organization: How organizations use information to construct meaning, create knowledge, and make decisions. Oxford University Press, Oxford (1998)Google Scholar
  6. 6.
    Daud, A., Li, J., Zhou, L., Muhammad, F.: Exploiting temporal authors interests via temporal-author-topic modeling. In: Huang, R., Yang, Q., Pei, J., Gama, J., Meng, X., Li, X. (eds.) ADMA 2009. LNCS (LNAI), vol. 5678, pp. 435–443. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Gao, H., Hu, J., Wilson, C., Li, Z., Chen, Y., Zhao, B.Y.: Detecting and characterizing social spam campaigns. In: Proceedings of the 10th ACM SIGCOMM Conference on Internet Measurement, pp. 35–47. ACM (2010)Google Scholar
  8. 8.
    Josang, A., Ismail, R., Boyd, C.: A survey of trust and reputation systems for online service provision. Decision Support Systems 43(2), 618–644 (2007)CrossRefGoogle Scholar
  9. 9.
    Li, J., Zheng, R., Chen, H.: From fingerprint to writeprint. Communications of the ACM 49(4), 76–82 (2006)CrossRefGoogle Scholar
  10. 10.
    Li, L., Xiao, W., Dai, C., Xu, J., Ge, B.: The recognition of multiple virtual identities association based on multi-agent system. In: Cao, L., Zeng, Y., Symeonidis, A.L., Gorodetsky, V., Müller, J.P., Yu, P.S. (eds.) ADMI 2013. LNCS(LNAI), vol. 8316, pp. 40–50. Springer, Heidelberg (2014)Google Scholar
  11. 11.
    Pan, Y.: Id identification in online communities. Technical report. Citeseer (2006)Google Scholar
  12. 12.
    Rosen-Zvi, M., Griffiths, T., Steyvers, M., Smyth, P.: The author-topic model for authors and documents. In: Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence, pp. 487–494. AUAI Press (2004)Google Scholar
  13. 13.
    Stamatatos, E.: A survey of modern authorship attribution methods. Journal of the American Society for Information Science and Technology 60(3), 538–556 (2009)CrossRefGoogle Scholar
  14. 14.
    Steyvers, M., Griffiths, T.: Probabilistic topic models. Handbook of latent Semantic Analysis 427(7), 424–440 (2007)Google Scholar
  15. 15.
    Steyvers, M., Smyth, P., Rosen-Zvi, M., Griffiths, T.: Probabilistic author-topic models for information discovery. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 306–315. ACM (2004)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Le Li
    • 1
    • 2
  • Weidong Xiao
    • 1
  • Changhua Dai
    • 1
  • Haiming Tong
    • 2
  • Zhiqiang Song
    • 2
  1. 1.College of Information System and ManagementNational University of Defense TechnologyChangshaChina
  2. 2.China Satellite Maritime Tracking and Control DepartmentJiangyinChina

Personalised recommendations