Advertisement

Efficiently Retrieving Top-k Trajectories by Locations via Traveling Time

  • Yuxing Han
  • Lijun Chang
  • Wenjie Zhang
  • Xuemin Lin
  • Liping Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8506)

Abstract

The flourishing industry of location-based services has collected a massive amount of users’ positions in the form of spatial trajectories, which raise many research problems. In this paper, we study a trajectory retrieving query, k-TLT, which aims at retrieving the top-k Trajectories by Locations and ranked by traveling Time. Given a set Q of query locations, a k-TLT query retrieves top-k trajectories that are close to Q with respect to traveling time. In contrast to existing works which consider only location information, k-TLT queries also consider the traveling time information, which have many applications, such as travel route planning and moving object study. To efficiently answer a k-TLT query, we first online compute a list L q of trajectories for each query location q ∈ Q, such that trajectories in L q are ranked by their traveling time to q. Based on the online generated lists L q corresponding to query locations, a small set of candidate trajectories that are close to Q is selected by iteratively retrieving trajectories from lists L q . Then, the set of candidate trajectories is refined and pruned to determine the top-k trajectories. We conduct extensive experiments on a real trajectory dataset and verify the efficiency of our approach.

Keywords

Trajectory retrieving locations traveling time efficiency 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berndt, D.J., Clifford, J.: Using dynamic time warping to find patterns in time series. In: KDD Workshop, vol. 10, pp. 359–370 (1994)Google Scholar
  2. 2.
    Chen, L., Ng, R.: On the marriage of lp-norms and edit distance. In: VLDB, pp. 792–803. VLDB Endowment (2004)Google Scholar
  3. 3.
    Chen, L., Özsu, M.T., Oria, V.: Robust and fast similarity search for moving object trajectories. In: SIGMOD, pp. 491–502. ACM (2005)Google Scholar
  4. 4.
    Chen, Z., Shen, H.T., Zhou, X., Zheng, Y., Xie, X.: Searching trajectories by locations: An efficiency study. In: SIGMOD, pp. 255–266. ACM (2010)Google Scholar
  5. 5.
    Frentzos, E., Gratsias, K., Pelekis, N., Theodoridis, Y.: Nearest neighbor search on moving object trajectories. In: Medeiros, C.B., Egenhofer, M.J., Bertino, E. (eds.) SSTD 2005. LNCS, vol. 3633, pp. 328–345. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Frentzos, E., Gratsias, K., Theodoridis, Y.: Index-based most similar trajectory search. In: ICDE, pp. 816–825. IEEE (2007)Google Scholar
  7. 7.
    Guttman, A.: R-trees: A dynamic index structure for spatial searching, vol. 14. ACM (1984)Google Scholar
  8. 8.
    Hjaltason, G.R., Samet, H.: Distance browsing in spatial databases. ACM Transactions on Database Systems (TODS) 24(2), 265–318 (1999)CrossRefGoogle Scholar
  9. 9.
    Roussopoulos, N., Kelley, S., Vincent, F.: Nearest neighbor queries. ACM Sigmod Record 24(2), 71–79 (1995)CrossRefGoogle Scholar
  10. 10.
    Sherkat, R., Rafiei, D.: On efficiently searching trajectories and archival data for historical similarities. Proceedings of the VLDB Endowment 1(1), 896–908 (2008)CrossRefGoogle Scholar
  11. 11.
    Song, Z., Roussopoulos, N.: K-nearest neighbor search for moving query point. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS, vol. 2121, pp. 79–96. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Tang, L.-A., Zheng, Y., Xie, X., Yuan, J., Yu, X., Han, J.: Retrieving k-nearest neighboring trajectories by a set of point locations. In: Pfoser, D., Tao, Y., Mouratidis, K., Nascimento, M.A., Mokbel, M., Shekhar, S., Huang, Y. (eds.) SSTD 2011. LNCS, vol. 6849, pp. 223–241. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Vlachos, M., Kollios, G., Gunopulos, D.: Discovering similar multidimensional trajectories. In: ICDE, pp. 673–684. IEEE (2002)Google Scholar
  14. 14.
    Yuan, J., Zheng, Y., Xie, X., Sun, G.: Driving with knowledge from the physical world. In: SIGKDD, pp. 316–324. ACM (2011)Google Scholar
  15. 15.
    Yuan, J., Zheng, Y., Zhang, C., Xie, W., Xie, X., Sun, G., Huang, Y.: T-drive: Driving directions based on taxi trajectories. In: SIGSPATIAL, pp. 99–108. ACM (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Yuxing Han
    • 1
  • Lijun Chang
    • 2
  • Wenjie Zhang
    • 2
  • Xuemin Lin
    • 1
    • 2
  • Liping Wang
    • 1
  1. 1.East China Normal UniversityChina
  2. 2.The University of New South WalesAustralia

Personalised recommendations