Skip to main content

Disturbances in the Control of Blood System During Posthypoxic Period

  • Chapter
  • First Online:
Theory of Hematopoiesis Control

Part of the book series: SpringerBriefs in Cell Biology ((SBCB,volume 5))

  • 373 Accesses

Abstract

One of the pivotal problems in experimental and clinical medicine is adaptation to hypoxia. Almost any pathologic process is more or less accompanied with the development of a particular type of hypoxia. The hypoxic stimulation exerts a powerful effect on the transport of blood gases resulting in the functional and then the structural rearrangements in the mechanisms supplying oxygen for an organism. On the whole, these changes sustain the energy metabolism [1, 10, 14, 124, 126, 147, 159, 235].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agadzhanyan NA, Elfimov AI (1986) Functions of an organism during hypoxia and hypercapnia [in Russian]. Meditsina, Moscow, p 272

    Google Scholar 

  2. Alekseeva AV, Gurvich AM, Semchenko VV (2003) Postresuscitation encephalopathia: pathogenesis, clinical features, prevention, and treatment [in Russian]. Omsk, p 152

    Google Scholar 

  3. Breslav IS, Ivanov AS (1990) Respiration and exercise performance of humans under mountain conditions [in Russian]. Alma-Ata, p 184

    Google Scholar 

  4. Bures J, Buresova O, Huston JP (1991) Techniques and basic experiments for the study of brain and behavior [Russian translation]. Batuev AS (ed). Vysshaya Shkola, Moscow, p 398

    Google Scholar 

  5. Van Leer E, Stikney K (1967) Hypoxia [Russian translation]. Meditsina, Moscow, p 368

    Google Scholar 

  6. Gol’dberg ED (1989) Reference book on hematology with microphoto atlas [in Russian]. TGU, Tomsk, p 486

    Google Scholar 

  7. Gol’dberg ED, Dygai AM, Zhdanov VV (1999) The role of hemopoietin-inducing microenvironment in hemopoietic control during cytostatic myelosuppressions [in Russian]. STT, Tomsk, p 128

    Google Scholar 

  8. Gol’dberg ED, Dygaĭ AM, Zhdanov VV, Khlusov IA (1999) Dynamic theory of hemopoiesis. Byull Eksp Biol Med 127(5):484–494

    Google Scholar 

  9. Gol’dberg ED, Dygai AM, Zyuz’kov GN et al (2002) Mechanisms of changes in the erythroid hemopoietic stem during hypoxias of different severity. Byull Eksp Biol Med 134(8):142–145

    Google Scholar 

  10. Gol’dberg ED, Dygai AM, Karpova GV (1983) The role of lymphocytes in hemopoietic control [in Russian]. TGU, Tomsk, p 160

    Google Scholar 

  11. Gol’dberg ED, Dygai AM, Provalova NV et al (2004) The role of nervous system in hemopoietic control [in Russian]. TGU, Tomsk, p 146

    Google Scholar 

  12. Gol’dberg ED, Dygai AM, Khlusov IA (1997) The role of autonomic nervous system in hemopoietic control [in Russian]. TGU, Tomsk, p 219

    Google Scholar 

  13. Gol’dberg ED, Dygai AM, Shakhov VP (1992) Tissue culture methods in hematology [in Russian]. TGU, Tomsk, p 272

    Google Scholar 

  14. Gol’dberg ED, Dygai AM, Sherstoboev EY (2000) The mechanisms of local hemopoietic control [in Russian]. STT, Tomsk, p 147

    Google Scholar 

  15. Dygai AM, Klimenko NA (1992) Inflammation and hemopoiesis [in Russian]. TGU, Tomsk, p 276

    Google Scholar 

  16. Dygai AM, Shakhov VP (1989) The role of cell-cell interactions in hemopoietic control [in Russian]. TGU, Tomsk, p 224

    Google Scholar 

  17. Zakharov YM (2004) The nervous system role in inhibition of hemopoiesis. Ross Fiziol Zh Im I M Sechenova 90(8):987–1000

    PubMed  Google Scholar 

  18. Zakharov YM, Rassokhin AG (2002) Erythroblastic islet [in Russian]. Meditsina, Moscow, p 280

    Google Scholar 

  19. Zyuz’kov GN, Abramova EV, Dygai AM, Gol’dberg ED (2004) Mechanisms of regulation of erythropoiesis during hemolytic anemia. Byull Eksp Biol Med 138(10):378–381

    Google Scholar 

  20. Zyuz’kov GN (2006) Hematological mechanisms of adaptation to hypoxia: Abstract of Doct. Med. Sci. Dissertation [in Russian]. Tomsk, p 47

    Google Scholar 

  21. Zyuz’kov GN, Abramova EV, Dygai AM, Gol’dberg ED (2005) Reactions of the erythroid hemopoietic stem and their mechanisms during blood loss. Byull Eksp Biol Med 139(1):32–37

    Article  Google Scholar 

  22. Zyuz’kov GN, Gur’yantseva LA, Suslov NI et al (2002) Reactions of hemopoietic granulocytic stem in hypoxia of different severity. Byull Eksp Biol Med 134(10):379–382

    Google Scholar 

  23. Zyuz’kov GN, Dygai AM, Gol’dberg ED (2005) Humoral mechanisms of regulation of erythropoiesis during hypoxia. Byull Eksp Biol Med 139(2):133–137

    Google Scholar 

  24. Isabaeva VA (1975) Physiology of blood clotting during natural (mountain) adaptation: Abstract of Cand. Med. Sci. Dissertation [in Russian]. Frunze, p 28

    Google Scholar 

  25. Kaznacheev VP (1974) Modern problems of human adaptation. Adaptation and the Problems of General Pathology [in Russian], vol 2. Novosibirsk, pp 3–9

    Google Scholar 

  26. Kryzhanovsky GN (ed) (2002) Dysregulation pathology: guide book for physicians and biologists [in Russian]. Meditsina, Moscow, pp 18–78

    Google Scholar 

  27. Kushelevsky VI (1890) The data for medical geography and sanitary description of Fergana region [in Russian]. Novyi Margelan

    Google Scholar 

  28. Malkin VB, Gipennreiter EB (1977) Acute and chronic hypoxia [in Russian]. Nauka, Moscow, p 315

    Google Scholar 

  29. Meerson FZ, Pshenichnikova MG (1988) Adaptation to stress exposure and physical loads [in Russian]. Meditsina, Moscow, p 256

    Google Scholar 

  30. Moroz BB (2002) Postresuscitation disease as dysregulation pathology/dysregulation pathology: guide book for physicians and biologists [in Russian]. Kryzhanovsky GN (ed). Meditsina, Moscow, pp 233–259

    Google Scholar 

  31. Nalivaĭko AM (1982) Changes in the rat lymphoid organs in acute hypoxia. Arkh Anat Gistol Embriol 82(6):87–91

    PubMed  Google Scholar 

  32. Natan DG, Ziff KA (1994) Hematopoiesis control. Gematol Transfuziol 39(2):3–10

    Google Scholar 

  33. Novikov NM (1982) Changes in the erythropoiesis-stimulating action of erythrocytic factors in blockade of the mononuclear phagocyte cells. Patol Fiziol Eksp Ter (6):56–58

    Google Scholar 

  34. Negovsky VA, Gurvich AM, Zolotokrylina ES (1987) Postresuscitation disease [in Russian]. Meditsina, Moscow, p 480

    Google Scholar 

  35. Negovsky VA (1991) Neurological aspects of reanimatology. Central nervous system and postresuscitation pathology [in Russian]. Moscow, pp 11–24

    Google Scholar 

  36. Novitskii VV, Gol’dberg ED, Urazova OI (2009) Pathophysiology [in Russian], vol 1. GEOTAR-Media, Moscow, p 848

    Google Scholar 

  37. Polenov SA (1986) Hypoxia. Physiology of circulation. Control of circulation [in Russian]. Nauka, Leningrad, pp 384–397

    Google Scholar 

  38. Sarkisov DS, Aruin LI (1987) Structural basis of adaptation and compensation for the defective functions [in Russian]. Meditsina, Moscow, pp 20–36

    Google Scholar 

  39. Selye H (1960) Studies of the adaptation syndrome [Russian translation]. Medgiz, Moscow, p 254

    Google Scholar 

  40. Selye H (1972) At a level of the whole organism [Russian translation]. Meditsina, Moscow, p 121

    Google Scholar 

  41. Sverchkova VS (1985) Hypoxia-hypercapnia and functional potencies of an organism [in Russian]. Nauka, Alma-Ata, p 176

    Google Scholar 

  42. Tilis AYu, Kydyrmaev BK (1978) Effect of high-altitude adaptation on interaction between erythro- and leucopoiesis. Regulatory mechanisms in blood system [in Russian], Part 1. Krasnoyarsk, pp 157–158

    Google Scholar 

  43. Tulebekov BT, Norimov AS (1980) Stem cells and T- and B-lymphocytes in acute hypoxia. Byull Eksp Biol Med 40(8):15–17

    Google Scholar 

  44. Uzhanskiĭ YG, Novikov NM, Yushkov BG (1977) Effect of erythrocyte breakdown products on stem cells and erythropoietin formation. Byull Eksp Biol Med 84(8):143–145

    Google Scholar 

  45. Yushkov BG, Klimin VG, Severin MV (1999) Blood system and stressful stimulation of an organism [in Russian]. Yekaterinburg, p 198

    Google Scholar 

  46. Yastrebov AP, Yushkov BG, Bol’shakov VN (1988) Control of hemopoiesis in organism exposed to extreme stimuli [in Russian]. Sverdlovsk, p 152

    Google Scholar 

  47. Adelman DM, Maltepe E, Simon MC (1999) Multilineage embryonic hematopoiesis requires hypoxic ARNT activity. Genes Dev 13(19):2478–2483

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Brandan N, Aguirre M, Carmuega R et al (1997) Proliferative and maturative behaviour patterns on murine bone marrow and spleen erythropoiesis along hypoxia. Acta Physiol Pharmacol Ther Latinoam 47(2):125–135

    PubMed  CAS  Google Scholar 

  49. Cipolleschi MG, D’Ippolito G, Bernabei PA et al (1997) Severe hypoxia enhances the formation of erythroid bursts from human cord blood cells and the maintenance of BFU-E in vitro. Exp Hematol 25(11):1187–1194

    PubMed  CAS  Google Scholar 

  50. Ehrenbourg I, Gorbatchenkov A (1993) Interval hypoxic training of patients with coronary heart disease. Hypoxia Med J 1:14–18

    Google Scholar 

  51. Favier R, Spielvogel H, Caceres E et al (1997) Differential effects of ventilatory stimulation by sex hormones and almitrine on hypoxic erythrocytosis. Pflugers Arch 434(1):97–103

    Article  PubMed  CAS  Google Scholar 

  52. Gordon MY (1988) Extracellular matrix of the marrow microenvironment. Br J Haematol 70(1):1–4

    Article  PubMed  CAS  Google Scholar 

  53. Hasan NM, Parker PJ, Adams GE (1996) Induction and phosphorylation of protein kinase C-alpha and mitogen-activated protein kinase by hypoxia and by radiation in Chinese hamster V79 cells. Radiat Res 145(2):128–133

    Article  PubMed  CAS  Google Scholar 

  54. Ivanovic Z, Bartolozzi B, Bernabei PA et al (2000) Incubation of murine bone marrow cells in hypoxia ensures the maintenance of marrow-repopulating ability together with the expansion of committed progenitors. Br J Haematol 108(2):424–429

    Article  PubMed  CAS  Google Scholar 

  55. Lau AS, Lehman D, Geertsma FR, Yeung MC (1996) Biology and therapeutic uses of myeloid hematopoietic growth factors and interferons. Pediatr Infect Dis J 15(7):563–575

    Article  PubMed  CAS  Google Scholar 

  56. Li C, Jackson RM (2002) Reactive species mechanisms of cellular hypoxia-reoxygenation injury. Am J Physiol Cell Physiol 282(2):C227–C241

    Article  PubMed  CAS  Google Scholar 

  57. Mide SM, Huygens P, Bozzini CE, Fernandez Pol JA (2001) Effects of human recombinant erythropoietin on differentiation and distribution of erythroid progenitor cells on murine medullary and splenic erythropoiesis during hypoxia and post-hypoxia. In Vivo (Greece) 15(2):125–132

    CAS  Google Scholar 

  58. Sakata S, Enoki Y, Ueda M (1992) Relationships between erythropoietin and erythroid colony-stimulating activity in mouse plasma. Zool Sci 9(6):1251

    Google Scholar 

  59. Taneja R, Rameshwar P, Upperman J et al (2000) Effects of hypoxia on granulocytic-monocytic progenitors in rats. Role of bone marrow stroma. Am J Hematol 64(1):20–25

    Article  PubMed  CAS  Google Scholar 

  60. Walsh RN, Cummins RA (1976) The Open-Field Test: a critical review. Psychol Bull 83(3):482–504

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dygai, A.M., Zhdanov, V.V. (2014). Disturbances in the Control of Blood System During Posthypoxic Period. In: Theory of Hematopoiesis Control. SpringerBriefs in Cell Biology, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-08584-5_6

Download citation

Publish with us

Policies and ethics