Skip to main content

Mechanisms of Hematopoiesis Control

  • Chapter
  • First Online:
Theory of Hematopoiesis Control

Part of the book series: SpringerBriefs in Cell Biology ((SBCB,volume 5))

  • 506 Accesses

Abstract

The blood system is composed of hematopoietic and hemolytic organs, circulating blood, and the control apparatus, which plays the important role in hematopoiesis by a balanced production of spectacular moiety of the cellular elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adyushkin AI (1983) Changes in balance between CFU-S-produced colony types during multiple injections of glucocorticoids at low doses. Gematol Transfuziol 9:32–34

    Google Scholar 

  2. Aksinenko SG (1994) The role of sympathetic nervous system in control of hemopoiesis during cytostatic hemosuppression [in Russian]. Abstract of Cand. Med. Sci. Dissertation, Tomsk, p 19

    Google Scholar 

  3. Severin ES (ed) (2005) Textbook on biochemistry [in Russian]. GEOTAR-Media, Moscow, p 784

    Google Scholar 

  4. Vladimirskaya EB, Maschan AA, Rumyantsev AG (1997) Apoptosis and its role in the development of tumor expansion. Gematol Transfuziol 42(5):4–9

    Google Scholar 

  5. Vorgalik VG (1953) The studies of Russian scientists on nervous control of blood system [in Russian]. Gorkii, p 64

    Google Scholar 

  6. Geĭl RP, Butturini A (1994) Stem cells, clonality, and leukemia. Gematol Transfuziol 39(6):3–6

    Google Scholar 

  7. Abdulkadyrov KM (ed) (2004) Hematology: modern reference book [in Russian]. Eksmo/St. Petersburg, Moscow/Sova, p 928

    Google Scholar 

  8. Gol’dberg DI (1952) Essays on hematology (Hemopoiesis and Nervous System) [in Russian]. Tomsk, p 232

    Google Scholar 

  9. Gol’dberg DI, Zapuskalov VI (1957) The mechanisms of acute leukocyte reaction [in Russian]. Tomsk, p 150

    Google Scholar 

  10. Gol’dberg ED (1989) Reference book on hematology with microphoto atlas [in Russian]. TGU, Tomsk, p 486

    Google Scholar 

  11. Gol’dberg ED, Dygai AM, Zhdanov VV (2001) Dynamic theory of hematopoietic control and the role of cytokines in the control of hemopoiesis. Med Immunol 3(4):487–498

    Google Scholar 

  12. Gol’dberg ED, Dygai AM, Zhdanov VV (2002) The mechanisms of dysregulation of blood system during pathology. In: Kryzhanovsky GN (ed) Dysregulation pathology: guide book for physicians and biologists [in Russian]. Meditsina, Moscow, pp 386–394

    Google Scholar 

  13. Gol’dberg ED, Dygai AM, Zhdanov VV (1999) The role of hemopoietin-inducing microenvironment in hemopoietic control during cytostatic myelosuppressions [in Russian]. STT, Tomsk, p 128

    Google Scholar 

  14. Gol’dberg ED, Dygai AM, Zhdanov VV (2005) Modern views on the problem of stem cells and potentialities of their use in medicine. Kletochn Tekhnol Biol Med 4:184–189

    Google Scholar 

  15. Gol’dberg ED, Dygai AM, Zhdanov VV et al (2007) Pharmacologic regulation of blood system during experimental neurotic influences [in Russian]. TGU, Tomsk, p 156

    Google Scholar 

  16. Gol’dberg ED, Dygaĭ AM, Zhdanov VV, Khlusov IA (1999) Dynamic theory of hemopoiesis. Byull Eksp Biol Med 127(5):484–494

    Google Scholar 

  17. Gol’dberg ED, Dygai AM, Karpova GV (1983) The role of lymphocytes in hemopoietic control [in Russian]. TGU, Tomsk, p 160

    Google Scholar 

  18. Gol’dberg ED, Dygaĭ AM, Khlusov IA et al (1993) The production by bone marrow cells of humoral factors in extreme exposures of different origins. Byull Eksp Biol Med 116(9):244–246

    Google Scholar 

  19. Gol’dberg ED, Dygai AM, Khlusov IA (1997) The role of autonomic nervous system in hemopoietic control [in Russian]. TGU, Tomsk, p 219

    Google Scholar 

  20. Gorizontov PD, Белоусова ОИ, Fedotova MI (1983) Stress and blood system [in Russian]. Meditsina, Moscow, p 240

    Google Scholar 

  21. Gubina NA, Morshchakova EF (1974) Molecular aspects of erythropoietic control [in Russian]. Pavlov AD (ed). Ryazan’, pp 119–125

    Google Scholar 

  22. Devoino LV, Idova GV, Al’perina EL et al (2005) Cerebral neurotransmitter systems in modulation of immune response (dopamine, serotonin, GABA). Neiroimmunologiya 3(1):11–18

    Google Scholar 

  23. Devoino LV, Il’yuchenok RY (1993) Neurotransmitter systems in psychic immunomodulation: dopamine, serotonin, GABA, and neuropeptides [in Russian]. TsERIS, Novosibirsk, p 240

    Google Scholar 

  24. Dygai AM, Zhdanov VV (2010) Granulocyte colony-stimulating factor: pharmacological features [in Russian]. RAMS Publishing House, Moscow, p 138

    Google Scholar 

  25. Dygai AM, Klimenko NA (1992) Inflammation and hemopoiesis [in Russian]. TGU, Tomsk, p 276

    Google Scholar 

  26. Dygai AM, Shakhov VP (1989) The role of cell-cell interactions in hemopoietic control [in Russian]. TGU, Tomsk, p 224

    Google Scholar 

  27. Dygaĭ AM, Shakhov VP, Kirienkova EV et al (1990) The role of glucocorticoids in the development of the phenomenon of bone marrow hematopoiesis stimulation in stress. Biol Nauki 12:71–76

    PubMed  Google Scholar 

  28. Zakharov YM (1998) Lections on blood system physiology. Meditsinskii Vestnik [in Russian] 19:152

    Google Scholar 

  29. Zakharov YM, Rassokhin AG (2002) Erythroblastic islet [in Russian]. Meditsina, Moscow, p 280

    Google Scholar 

  30. Idova GV (1994) The cellular mechanisms of immune modulating effect of neurotransmitter systems. The role of bone marrow. Byull Sib Branch RAMS 4:52–56

    Google Scholar 

  31. Idova GV, Cheido MA, Zhukova EN et al (2001) Effects of type 1A serotonin receptor agonist 8-OH-DPAT on immune response. Byull Eksp Biol Med 132(10):432–433

    Google Scholar 

  32. Ketlinskii SA (2002) The role of type 1 and 2 T-helpers in control of cellular and humoral immunity. Immunologiya 2:77–79

    Google Scholar 

  33. Kozints GP, Gol’dberg ED (eds) (1982) Kinetic aspects of hemopoiesis [in Russian]. TGU, Tomsk, p 311

    Google Scholar 

  34. Lebedev VG, Moroz BB, Deshevoĭ YB, Lyrshchikova AV (2004) The role of hematopoietic microenvironment in the mechanism of action of prodigiozan on postradiation recovery of hemopoiesis in long-term bone marrow cultures. Patol Fiziol Eksp Ter 3:7–10

    PubMed  Google Scholar 

  35. Natan DG, Ziff KA (1994) Hematopoiesis control. Gematol Transfuziol 39(2):3–10

    Google Scholar 

  36. Naumenko OI (1992) Role of bone marrow hemopoietic microenvironment in norm and leucosis. Eksp Onkol 14(1):11–20

    Google Scholar 

  37. Pavlov AD, Morshchakova EF (1987) Control of erythropoiesis: physiological and clinical aspects [in Russian]. Meditsina, Moscow, p 272

    Google Scholar 

  38. Petrov RV, Khaitov RM, Man’ko VM, Mikhailova AA (1981) Control and regulation of immune response [in Russian]. Meditsina, Moscow, p 312

    Google Scholar 

  39. Romashko OO, Moroz BB, Bezin GI (1979) Stimulating and inhibiting action of hydrocortisone on hematopoietic progenitor cells. Probl Gematol Pereliv Krovi 24(9):48–55

    PubMed  CAS  Google Scholar 

  40. Rugal’ VI, Blinova TS, Ponomarenko VM, Abdulkadyrov KM (1991) Ultrastructural organization of the hematopoietic microenvironment of human bone marrow. Gematol Transfuziol 36(3):11–15

    PubMed  Google Scholar 

  41. Vorob’ev AI (2002) Textbook on hematology [in Russian], vol 1. Newdiamed, Moscow, p 280

    Google Scholar 

  42. Serov VV, Shekhter AB (1981) Connective tissue [in Russian]. Meditsina, Moscow, p 312

    Google Scholar 

  43. Kozlov VA, Sennikov SV (eds) (2004) Cytokine family: theoretical and clinical aspects [in Russian]. Nauka, Novosibirsk, p 324

    Google Scholar 

  44. Totolyan AA, Freidlin IS (2000) The cells of immune system [in Russian]. Nauka, St. Petersburg, p 231

    Google Scholar 

  45. Trentin DD (1982) The hematopoietic microenvironment. Probl Gematol Pereliv Krovi 27(7):52–57

    PubMed  CAS  Google Scholar 

  46. Fridenshtein AY, Luriya EA (1980) Cellular basis of hemopoietic microenvironment [in Russian]. Meditsina, Moscow, p 213

    Google Scholar 

  47. Khlusov IA, Dygaí AM, Gol’dberg ED (1997) Adrenergic dependence of hematopoietic precursors proliferation under cytostatic effect. Byull Eksp Biol Med 123(6):638–641

    Article  CAS  Google Scholar 

  48. Khlusov IA, Raskovalova TY, Kirienkova EV, Dygai AM (1999) Effect of adrenals on the hematopoietic microenvironment of the bone marrow. Byull Eksp Biol Med 128(11):586–590

    CAS  Google Scholar 

  49. Cheĭdo MA (1997) The role of dopaminergic mechanism in the realization of immunostimulating effect of substance P and its analog. Byull Eksp Biol Med 123(2):135–137

    Article  Google Scholar 

  50. Cheredeev AN (1990) Interleukins: functional role as mediators of the immune system. Lab Delo 10:4–11

    PubMed  Google Scholar 

  51. Chernigovsky VN, Shekhter SYu, Yaroshevsky AYa (1967) Control of erythropoiesis [in Russian]. Leningrad, p 101

    Google Scholar 

  52. Chernigovsky VN, Yaroshevsky AY (1953) Problems of neural control of blood system [in Russian]. Medgiz, Moscow, p 222

    Google Scholar 

  53. Chertkov IL, Deryugina EI, Levir RD, Abrakham NG (1991) Stem hemopoietic cell: differentiating and proliferative potential. Usp Sovr Biol 111(6):905–922

    CAS  Google Scholar 

  54. Yushkov BG, Klimin VG, Kuz’min AI (2004) Blood vessels in bone marrow and hemopoietic control [in Russian]. Ural Division of RAS, Yekaterinburg, p 150

    Google Scholar 

  55. Yastrebov AP, Yushkov BG, Bol’shakov VN (1988) Control of hemopoiesis in organism exposed to extreme stimuli [in Russian]. Sverdlovsk, p 152

    Google Scholar 

  56. Abbas AK, Murphy KM, Sher A (1996) Functional diversity of helper T-lymphocytes. Nature 383(6603):787–793

    Article  PubMed  CAS  Google Scholar 

  57. Angelin-Duclos C, Domenget C, Kolbus A et al (2005) Thyroid hormone T3 acting through the thyroid hormone alpha receptor is necessary for implementation of erythropoiesis in the neonatal spleen environment in the mouse. Development 132(5):925–934

    Article  PubMed  CAS  Google Scholar 

  58. Arai F, Hirao A, Ohmura M et al (2004) Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118(2):149–161

    Article  PubMed  CAS  Google Scholar 

  59. Arai F, Hirao A, Suda T (2005) Regulation of hematopoiesis and its interaction with stem cell niches. Int J Hematol 82(5):371–376

    Article  PubMed  CAS  Google Scholar 

  60. Blazsek I, Liu XH, Anjo A (1995) The hematon, a morphogenetic functional complex in mammalian bone marrow, involves erythroblastic islands and granulocytic cobblestones. Exp Hematol 23(4):309–319

    PubMed  CAS  Google Scholar 

  61. Bodey B, Bodey B Jr, Siegel SE, Kaiser HE (2000) The role of the reticulo-epithelial (RE) cell network in the immuno-neuroendocrine regulation of intrathymic lymphopoiesis. Anticancer Res 20(3A):1871–1888

    PubMed  CAS  Google Scholar 

  62. Borojevic R, Roela RA, Rodarte RS et al (2004) Bone marrow stroma in childhood myelodysplastic syndrome: composition, ability to sustain hematopoiesis in vitro, and altered gene expression. Leuk Res 28(8):831–844

    Article  PubMed  CAS  Google Scholar 

  63. Bussolino F, Bocchietto E, Silvagno F et al (1994) Actions of molecules which regulate hemopoiesis on endothelial cells: memoirs of common ancestors? Pathol Res Pract 190(9–10):834–839

    Article  PubMed  CAS  Google Scholar 

  64. Caldwell J, Emerson SG (1994) IL-1 alpha and TNF alpha act synergistically to stimulate production of myeloid colony-stimulating factors by cultured human bone marrow stromal cells and cloned stromal cell strains. J Cell Physiol 159(2):221–228

    Article  PubMed  CAS  Google Scholar 

  65. Campbell AD, Long MW, Wicha MS (1990) Developmental regulation of granulocytic cell binding to hemonectin. Blood 76(9):1758–1764

    PubMed  CAS  Google Scholar 

  66. Cecchini MG, Hofstetter W, Halasy J et al (1997) Role of CSF-1 in bone and bone marrow development. Mol Reprod Dev 46(1):75–83

    Article  PubMed  CAS  Google Scholar 

  67. Chopra IJ (1981) Triiodothyronines in health and disease. Monogr Endocrinol 18(1–14):58–145

    Article  CAS  Google Scholar 

  68. Cohen JJ (1972) Thymus-derived lymphocytes sequestered in the bone marrow of hydrocortisone-treated mice. J Immunol 108(3):841–844

    PubMed  CAS  Google Scholar 

  69. Consolo F, Princi P (1960) Experimental research on the action of corticoids and of ACTH on normal bone marrow activity. Boll Soc Ital Biol Sper 36:531–534

    PubMed  CAS  Google Scholar 

  70. Coviello AD, Kaplan B, Lakshman KM et al (2008) Effects of graded doses of testosterone on erythropoiesis in healthy young and older men. J Clin Endocrinol Metab 93(3):914–919

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  71. Crocker PR, Gordon S (1985) Isolation and characterization of resident stromal macrophages and hematopoietic cell clusters from mouse bone marrow. J Exp Med 162(3):993–1014

    Article  PubMed  CAS  Google Scholar 

  72. Dal-Zotto S, Marti O, Armario A (2003) Glucocorticoids are involved in the long-term effects of a single immobilization stress on the hypothalamic-pituitary-adrenal axis. Psychoneuroendocrinology 28(8):992–1009

    Article  PubMed  CAS  Google Scholar 

  73. Donahue RE, Yang YC, Clark SC (1990) Human P40 T-cell growth factor (interleukin-9) supports erythroid colony formation. Blood 75(12):2271–2275

    PubMed  CAS  Google Scholar 

  74. Fauci AS, Dale DC (1974) The effect of in vivo hydrocortisone on subpopulations of human lymphocytes. J Clin Invest 53(1):240–246

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  75. Fearon DT, Locksley RM (1996) The instructive role of innate immunity in the acquired immune response. Science 272(5258):50–53

    Article  PubMed  CAS  Google Scholar 

  76. Fink GD, Fisher JW (1976) Erythropoietin production after renal denervation or beta-adrenergic blockade. Am J Physiol 230(2):508–513

    PubMed  CAS  Google Scholar 

  77. Fisher JW, Crook JJ (1962) Influence of several hormones on erythropoiesis and oxygen consumption in the hypophysectomized rat. Blood 19:557–565

    PubMed  CAS  Google Scholar 

  78. Giltay EJ, Gooren LJ (2009) Potential side effects of androgen deprivation treatment in sex offenders. J Am Acad Psychiatry Law 37(1):53–58

    PubMed  Google Scholar 

  79. Gimble JM, Robinson CE, Wu X, Kelly KA (1996) The function of adipocytes in the bone marrow stroma: an update. Bone 19(5):421–428

    Article  PubMed  CAS  Google Scholar 

  80. Gimble JM, Zvonic S, Floyd ZE et al (2006) Playing with bone and fat. J Cell Biochem 98(2):251–266

    Article  PubMed  CAS  Google Scholar 

  81. Glader BE, Rambach WA, Alt HL (1968) Observations on the effect of testosterone and hydrocortisone on erythropoiesis. Ann N Y Acad Sci 149(1):383–388

    Article  PubMed  CAS  Google Scholar 

  82. Golde DW, Bersch N, Quan SG, Cline MJ (1976) Inhibition of murine granulopoiesis in vitro by dexamethasone. Am J Hematol 1(4):369–373

    Article  PubMed  CAS  Google Scholar 

  83. Goldman S, Loebelenz J, McCarthy K et al (1991) Recombinant human interleukin-11 stimulates megakaryocyte maturation and increase in peripheral platelet number in vivo. Blood 78(10):132

    Google Scholar 

  84. Gordon AS, Mirand EA, Zanjani ED (1967) Mechanisms of prednisolone action in erythropoiesis. Endocrinology 81(2):363–368

    Article  PubMed  CAS  Google Scholar 

  85. Gordon MY (1994) Stem cells and the microenvironment in aplastic anaemia. Br J Haematol 86(1):190–192

    Article  PubMed  CAS  Google Scholar 

  86. Gregoretti MG, Gottardi D, Ghia P et al (1994) Characterization of bone marrow stromal cells from multiple myeloma. Leuk Res 18(9):675–682

    Article  PubMed  CAS  Google Scholar 

  87. Grohmann U, Van Snick J, Campanile F et al (2000) IL-9 protects mice from Gram-negative bacterial shock: suppression of TNF-alpha, IL-12, and IFN-gamma, and induction of IL-10. J Immunol 164(8):4197–4203

    Article  PubMed  CAS  Google Scholar 

  88. Gu YC, Kortesmaa J, Tryggvason K et al (2003) Laminin isoform-specific promotion of adhesion and migration of human bone marrow progenitor cells. Blood 101(3):877–885

    Article  PubMed  CAS  Google Scholar 

  89. Halvorsen S (1961) Plasma erythropoietin levels following hypothalamic stimulation in the rabbit. Scand J Clin Lab Invest 13:564–575

    Article  PubMed  CAS  Google Scholar 

  90. Halvorsen S (1966) The central nervous system in regulation of erythropoiesis. Acta Haematol 35(2):65–79

    Article  PubMed  CAS  Google Scholar 

  91. Hardy CL, Minguell JJ (1993) Cellular interactions in hemopoietic progenitor cell homing: a review. Scanning Microsc 7(1):333–341

    PubMed  CAS  Google Scholar 

  92. Haylock DN, Nilsson SK (2006) Osteopontin: a bridge between bone and blood. Br J Haematol 134(5):467–474

    Article  PubMed  CAS  Google Scholar 

  93. Haylock DN, Nilsson SK (2005) Stem cell regulation by the hematopoietic stem cell niche. Cell Cycle 4(10):1353–1355

    Article  PubMed  CAS  Google Scholar 

  94. Hill AD, Naama HA, Calvano SE, Daly JM (1995) The effect of granulocyte-macrophage colony-stimulating factor on myeloid cells and its clinical applications. J Leukoc Biol 58(6):634–642

    PubMed  CAS  Google Scholar 

  95. Ihara T, Tsujikawa T, Hodohara K et al (1996) Severe anemia in a patient with isolated adrenocorticotropin deficiency. Intern Med 35(11):898–901

    Article  PubMed  CAS  Google Scholar 

  96. Jackowski S, Rettenmier CW, Rock CO (1990) Prostaglandin E2 inhibition of growth in a colony-stimulating factor 1-dependent macrophage cell line. J Biol Chem 265(12):6611–6616

    PubMed  CAS  Google Scholar 

  97. Jacobsen FW, Smeland EB, Jacobsen SE (1993) TNF-α is a potent inhibitor of murine HPP-CFC stimulated by SCF and other hematopoietic growth factors. J Cell Biochem (Suppl 17b):64

    Google Scholar 

  98. Kacena MA, Gundberg CM, Horowitz MC (2006) A reciprocal regulatory interaction between megakaryocytes, bone cells, and hematopoietic stem cells. Bone 39(5):978–984

    Article  PubMed  CAS  Google Scholar 

  99. Kanbe E, Hatta Y, Tsuboi I et al (2006) Effects of neopterin on the hematopoietic microenvironment of senescence-accelerated mice (SAM). Biol Pharm Bull 29(1):43–48

    Article  PubMed  CAS  Google Scholar 

  100. Kazuto Y, Terence D (1990) Ultrastructural morphometric study of efferent nerve terminal on murine bone marrow stromal cells, and the recognition of a novel anatomical unit: the Neuro-Reticular Complex. Am J Anat 187(3):261–277

    Article  Google Scholar 

  101. Keller DC, Du XX, Srour EF et al (1993) Interleukin-11 inhibits adipogenesis and stimulates myelopoiesis in human long-term marrow cultures. Blood 82(5):1428–1435

    PubMed  CAS  Google Scholar 

  102. Kinik ST, Ozbek N, Yucel M et al (2005) Correlations among serum leptin levels, complete blood count parameters and peripheral CD34(+) cell count in prepubertal obese children. Ann Hematol 84(9):605–608

    Article  PubMed  CAS  Google Scholar 

  103. Kobayashi M, Imamura M, Uede T et al (1994) Expression of adhesion molecules on human hematopoietic progenitor cells at different maturational stages. Stem Cells 12(3):316–321

    Article  PubMed  CAS  Google Scholar 

  104. Konar DB, Manchanda SK (1970) Role of hypothalamus in the phagocytic activity of the reticulo-endothelial system. Ind J Physiol Pharmacol 14(2):23–24

    Google Scholar 

  105. Krantz SB, Jacobson LO (1970) Erythropoietin and the regulation of erythropoiesis. University of Chicago Press, Chicago

    Google Scholar 

  106. Kriegler AB, Bernardo D, Verschoor SM (1994) Protection of murine bone marrow by dexamethasone during cytotoxic chemotherapy. Blood 83(1):65–71

    PubMed  CAS  Google Scholar 

  107. Laharrague P, Oppert JM, Brousset P et al (2000) High concentration of leptin stimulates myeloid differentiation from human bone marrow CD34+ progenitors: potential involvement in leukocytosis of obese subjects. Int J Obes Relat Metab Disord 24(9):1212–1216

    Article  PubMed  CAS  Google Scholar 

  108. Lai YH, Heslan JM, Poppema S et al (1996) Continuous administration of Il-13 to mice induces extramedullary hemopoiesis and monocytosis. J Immunol 156(9):3166–3173

    PubMed  CAS  Google Scholar 

  109. Levesque JP, Leavesley DI, Niutta S et al (1995) Cytokines increase human hemopoietic cell adhesiveness by activation of very late antigen (VLA)-4 and VLA-5 integrins. J Exp Med 181(5):1805–1815

    Article  PubMed  CAS  Google Scholar 

  110. Li WM, Huang WQ, Huang YH et al (2000) Positive and negative hematopoietic cytokines produced by bone marrow endothelial cells. Cytokine 12(7):1017–1023

    Article  PubMed  CAS  Google Scholar 

  111. Lothrop CD Jr, Coulson PA, Nolan HL et al (1987) Cyclic hormonogenesis in gray collie dogs: interactions of hematopoietic and endocrine systems. Endocrinology 120(3):1027–1032

    Article  PubMed  CAS  Google Scholar 

  112. Maciejewski JP, Selleri C, Sato T et al (1995) Nitric oxide suppression of human hematopoiesis in vitro. Contribution to inhibitory action of interferon-gamma and tumor necrosis factor-alpha. J Clin Invest 96(2):1085–1092

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  113. Maestroni GJ, Togni M, Covacci V (1997) Norepinephrine protects mice from acute lethal doses of carboplatin. Exp Hematol 25(6):491–494

    PubMed  CAS  Google Scholar 

  114. Maestroni GJ, Conti A (1994) Modulation of hematopoiesis via alpha 1-adrenergic receptors on bone marrow cells. Exp Hematol 22(3):313–320

    PubMed  CAS  Google Scholar 

  115. Malacrida SA, Teixeira NA, Queiroz ML (1997) Regulation of stress-induced reduced myelopoiesis in rats. Int J Immunopharmacol 19(4):227–233

    Article  PubMed  CAS  Google Scholar 

  116. Mantovani A, Sozzani S, Locati M et al (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23(11):549–555

    Article  PubMed  CAS  Google Scholar 

  117. Maslova LN, Naumenko EV (1997) The role of glucocorticoids in a modification of the hypothalamo-hypophyseal-adrenal cortical function of rats induced by stress exposures in early ontogeny. Ross Fiziol Zh Im I M Sechenova 83(8):80–86

    PubMed  CAS  Google Scholar 

  118. Mayani H (1996) Composition and function of the hemopoietic microenvironment in human myeloid leukemia. Leukemia 10(6):1041–1047

    PubMed  CAS  Google Scholar 

  119. McNiece IK, Langley KE, Zsebo KM (1991) Recombinant human stem cell factor synergizes with GM-CSF, G-CSF, IL-3 and epo to stimulate human progenitor cells of the myeloid and erythroid lineages. Exp Hematol 19(3):226–231

    PubMed  CAS  Google Scholar 

  120. Metcalf D (1989) Haemopoietic growth factors 1. Lancet 1(8642):825–827

    Article  PubMed  CAS  Google Scholar 

  121. Minguell JJ, Erices A, Conget P (2001) Mesenchymal stem cells. Exp Biol Med (Maywood) 226(6):507–520

    CAS  Google Scholar 

  122. Mohle R, Rafii S, Moore MA (1998) The role of endothelium in the regulation of hematopoietic stem cell migration. Stem Cells 16(Suppl 1):159–165

    PubMed  Google Scholar 

  123. Mosmann TR, Cherwinski H, Bond MW et al (1986) Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 136(7):2348–2357

    PubMed  CAS  Google Scholar 

  124. Mosmann TR, Sad S (1996) The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol Today 17(3):138–146

    Article  PubMed  CAS  Google Scholar 

  125. Musashi M, Yang YC, Paul SR et al (1991) Direct and synergistic effects of interleukin 11 on murine hemopoiesis in culture. Proc Natl Acad Sci U S A 88(3):765–769

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  126. Naito K, Tamahashi N, Chiba T et al (1992) The microvasculature of the human bone marrow correlated with the distribution of hematopoietic cells. A computer-assisted three-dimensional reconstruction study. Tohoku J Exp Med 166(4):439–450

    Article  PubMed  CAS  Google Scholar 

  127. Naito M (1993) Macrophage heterogeneity in development and differentiation. Arch Histol Cytol 56(4):331–351

    Article  PubMed  CAS  Google Scholar 

  128. Ninomiya M, Abe A, Katsumi A et al (2007) Homing, proliferation and survival sites of human leukemia cells in vivo in immunodeficient mice. Leukemia 21(1):136–142

    Article  PubMed  CAS  Google Scholar 

  129. Nissen C, Moser Y, Speck B et al (1983) Dexamethasone enhances ‘CSA’ release and depresses ‘BPA’ release. Br J Haematol 53(2):301–310

    Article  PubMed  CAS  Google Scholar 

  130. Ohki K, Kohashi O (1994) Laminin promotes proliferation of bone marrow-derived macrophages and macrophage cell lines. Cell Struct Funct 19(2):63–71

    Article  PubMed  CAS  Google Scholar 

  131. Okada S, Suda T, Suda J et al (1991) Effects of interleukin 3, interleukin 6, and granulocyte colony-stimulating factor on sorted murine splenic progenitor cells. Exp Hematol 19(1):42–46

    PubMed  CAS  Google Scholar 

  132. Otsuka T, Ogo T, Nakano T et al (1994) Expression of the c-kit ligand and interleukin 6 genes in mouse bone marrow stromal cell lines. Stem Cells 12(4):409–415

    Article  PubMed  CAS  Google Scholar 

  133. Pellegrino TC, Bayer BM (2002) Role of central 5-HT(2) receptors in fluoxetine-induced decreases in T lymphocyte activity. Brain Behav Immun 16(2):87–103

    Article  PubMed  CAS  Google Scholar 

  134. Perry MJ, Samuels A, Bird D, Tobias JH (2000) Effects of high-dose estrogen on murine hematopoietic bone marrow precede those on osteogenesis. Am J Physiol Endocrinol Metab 279(5):E1159–1165

    PubMed  CAS  Google Scholar 

  135. Pospisil M, Zakopalova I, Netikova J (1972) The effect of hydrocortisone pretreatment upon erythropoietic recovery after a single sublethal x-ray exposure of mice. Folia Biol (Praha) 18(4):284–291

    CAS  Google Scholar 

  136. Qiu Y, Peng Y, Wang J (1996) Immunoregulatory role of neurotransmitters. Adv Neuroimmunol 6(3):223–231

    Article  PubMed  CAS  Google Scholar 

  137. Rafii S, Mohle R, Shapiro F et al (1997) Regulation of hematopoiesis by microvascular endothelium. Leuk Lymphoma 27(5–6):375–386

    PubMed  CAS  Google Scholar 

  138. Ray RJ, Paige CJ, Furlonger C et al (1996) Flt3 ligand supports the differentiation of early B cell progenitors in the presence of interleukin-11 and interleukin-7. Eur J Immunol 26(7):1504–1510

    Article  PubMed  CAS  Google Scholar 

  139. Rinehart J, Keville L, Measel J et al (1995) Corticosteroid alteration of carboplatin-induced hematopoietic toxicity in a murine model. Blood 86(12):4493–4499

    PubMed  CAS  Google Scholar 

  140. Rutherford MS, Witsell A, Schook LB (1993) Mechanisms generating functionally heterogeneous macrophages: chaos revisited. J Leukoc Biol 53(5):602–618

    PubMed  CAS  Google Scholar 

  141. Savary CA, Lotzova E (1990) Inhibition of human bone marrow and myeloid progenitors by interleukin 2-activated lymphocytes. Exp Hematol 18(10):1083–1089

    PubMed  CAS  Google Scholar 

  142. Schwarzenberger P, Huang W, Ye P et al (2000) Requirement of endogenous stem cell factor and granulocyte-colony-stimulating factor for IL-17-mediated granulopoiesis. J Immunol 164(9):4783–4789

    Article  PubMed  CAS  Google Scholar 

  143. Siczkowski M, Andrew T, Amos S, Gordon MY (1993) Hyaluronic acid regulates the function and distribution of sulfated glycosaminoglycans in bone marrow stromal cultures. Exp Hematol 21(1):126–130

    PubMed  CAS  Google Scholar 

  144. Sonoda Y (1994) Interleukin-4 – a dual regulatory factor in hematopoiesis. Leuk Lymphoma 14(3–4):231–240

    Article  PubMed  CAS  Google Scholar 

  145. Stern R (2003) Devising a pathway for hyaluronan catabolism: are we there yet? Glycobiology 13(12):105R–115R

    Article  PubMed  CAS  Google Scholar 

  146. Taipale J, Keski-Oja J (1997) Growth factors in the extracellular matrix. FASEB J 11(1):51–59

    PubMed  CAS  Google Scholar 

  147. Taub DD, Cox GW (1995) Murine Th1 and Th2 cell clones differentially regulate macrophage nitric oxide production. J Leukoc Biol 58(1):80–89

    PubMed  CAS  Google Scholar 

  148. Tsao CW, Lin YS, Cheng JT (1997) Effect of dopamine on immune cell proliferation in mice. Life Sci 61(24):L361–371

    Article  Google Scholar 

  149. Verfaillie CM, Catanzarro PM, Li WN (1994) Macrophage inflammatory protein 1 alpha, interleukin 3 and diffusible marrow stromal factors maintain human hematopoietic stem cells for at least eight weeks in vitro. J Exp Med 179(2):643–649

    Article  PubMed  CAS  Google Scholar 

  150. Vogel W, Berndt A, Müller A et al (2003) Differential in vivo and in vitro expression of ED-B+ fibronectin in adult human hematopoiesis. Int J Mol Med 12(6):831–837

    PubMed  CAS  Google Scholar 

  151. Wilson JG (1997) Adhesive interactions in hemopoiesis. Acta Haematol 97(1–2):6–12

    Article  PubMed  CAS  Google Scholar 

  152. Wilson JG, Tavassoli M (1994) Microenvironmental factors involved in the establishment of erythropoiesis in bone marrow. Ann N Y Acad Sci 718:271–283

    Article  PubMed  CAS  Google Scholar 

  153. Yang GS, Wang C, Minkin S et al (1991) Hydrocortisone in culture protects the blast cells in acute myeloblastic leukemia from the lethal effects of cytosine arabinoside. J Cell Physiol 148(1):60–67

    Article  PubMed  CAS  Google Scholar 

  154. Yokota T, Meka CS, Kouro T et al (2003) Adiponectin, a fat cell product, influences the earliest lymphocyte precursors in bone marrow cultures by activation of the cyclooxygenase-prostaglandin pathway in stromal cells. J Immunol 171(10):5091–5099

    Article  PubMed  CAS  Google Scholar 

  155. Zipori D (1989) Stromal cells from the bone marrow: evidence for a restrictive role in regulation of hemopoiesis. Eur J Haematol 42(3):225–232

    Article  PubMed  CAS  Google Scholar 

  156. White C, Yuan X, Schmidt PJ et al (2013) HRG1 is essential for heme transport from the phagolysosome of macrophages during erythrophagocytosis. Cell Metab 17(2):261–270

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  157. Nishio M, Yoneshiro T, Nakahara M et al (2012) Production of functional classical brown adipocytes from human pluripotent stem cells using specific hemopoietin cocktail without gene transfer. Cell Metab 16(3):394–406

    Article  PubMed  CAS  Google Scholar 

  158. Ellis SL, Nilsson SK (2012) The location and cellular composition of the hemopoietic stem cell niche. Cytotherapy 14(2):135–143

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dygai, A.M., Zhdanov, V.V. (2014). Mechanisms of Hematopoiesis Control. In: Theory of Hematopoiesis Control. SpringerBriefs in Cell Biology, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-08584-5_1

Download citation

Publish with us

Policies and ethics