Skip to main content

Agrobacterium, The Genetic Engineer

  • Chapter
  • First Online:
Principles of Plant-Microbe Interactions

Abstract

Agrobacteria are common soil and rhizosphere bacteria. Most strains are saprophytes, but strains harboring a tumor inducing plasmid (Ti plasmid) are pathogenic and can induce tumors on plants, called crown galls. The disease may lead to growth retardation and eventually the death of the host plant and thus can cause severe damage in horticulture. Crown galls form a favorable niche for Agrobacterium as they produce specific chemicals called opines which the bacteria can use for growth. Nowadays, Agrobacterium tumefaciens is best known as a natural genetic engineer, which is based on the molecular mechanism which it employs to induce crown gall. This involves the transfer of an oncogenic segment of the Ti plasmid (the T-DNA) to plant cells and its stable maintenance as part of one of the plant chromosomes. Expression of genes on the T-DNA is responsible for the formation of a tumor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez-Martinez CE, Christie PJ (2009) Biological diversity of prokaryotic type IV secretion systems. Microbiol Mol Biol Rev 73:775–808

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Beijersbergen A, den Dulk-Ras A, Schilperoort RA et al (1992) Conjugative transfer by the virulence system of Agrobacterium tumefaciens. Science 256:1324–1327

    Article  CAS  PubMed  Google Scholar 

  • Bevan MW, Chilton MD (1982) T-DNA of the Agrobacterium Ti and Ri Plasmids. Annu Rev Genet 16:357–384

    Article  CAS  PubMed  Google Scholar 

  • Binns AN, Thomashow MF (1988) Cell biology of Agrobacterium infection and transformation of plants. Annu Rev Microbiol 42:575–606

    Article  CAS  Google Scholar 

  • Braun AC (1978) Plant tumors. Biochim Biophys Acta 516:167–191

    CAS  PubMed  Google Scholar 

  • Bundock P, den Dulk-Ras A, Beijersbergen A et al (1995) Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J 14:3206–3214

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cangelosi GA, Ankenbauer RG, Nester EW (1990) Sugars induce the Agrobacterium virulence genes through a periplasmic binding protein and a transmembrane signal protein.Proc Natl Acad Sci U S A 87:6708–6712

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cascales E, Atmakuri K, Sarkar MK et al (2013) DNA substrate-induced activation of the Agrobacterium VirB/VirD4 type IV secretion system. J Bacteriol 195:2691–2704

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • De Groot MJA, Bundock P, Hooykaas PJJ et al (1998) Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol 16:839–842

    Article  CAS  PubMed  Google Scholar 

  • Dessaux Y, Petit A, Tempé J (1993) Chemistry and biochemistry of opines, chemical mediators of parasitism. Phytochem 34:31–38

    Article  CAS  Google Scholar 

  • Djamei A, Pitzschke A, Nakagami H et al (2007) Trojan horse strategy in Agrobacterium transformation: abusing MAPK defense signaling. Science 318:453–456

    Article  CAS  PubMed  Google Scholar 

  • Duckely M, Hohn B (2003) The VirE2 protein of Agrobacterium tumefaciens: the Yin and Yang of T-DNA transfer. FEMS Microbiol Lett 223:1–6

    Article  CAS  PubMed  Google Scholar 

  • Escudero J, den Dulk-Ras A, Regensburg-Tuink TJG et al (2003) VirD4-independent transformation by CloDF13 evidences an unknown factor required for the genetic colonization of plants via Agrobacterium. Mol Microbiol 47:891–901

    Article  CAS  PubMed  Google Scholar 

  • Gelvin SB (2000) Agrobacterium and plant genes involved in T-DNA transfer and integration. Annu Rev Plant Physiol Plant Mol Biol 51:223–256

    Article  CAS  PubMed  Google Scholar 

  • Hooykaas PJJ, Beijersbergen AGM (1994) The virulence system of Agrobacterium tumefaciens. Annu Rev Phytopathol 32:157–179

    Article  CAS  Google Scholar 

  • Jin S, Roitsch T, Christie PJ et al (1990) The regulatory VirG protein specifically binds to a cis-acting regulatory sequence involved in transcriptional activation of Agrobacterium tumefaciens virulence genes. J Bacteriol 172:531–537

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kahl G, Schell JS (1982) Molecular biology of plant tumors. Academic, New York

    Google Scholar 

  • Melchers LS, Regensburg-Tuïnk AJG, Schilperoort RA et al (1989) Specificity of signal molecules on the activation of Agrobacterium virulence gene expression. Mol Microbiol 3:969–977

    Article  CAS  PubMed  Google Scholar 

  • Michielse CB, Hooykaas PJ, van den Hondel CA et al (2005) Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Curr Genet 48:1–17

    Article  CAS  PubMed  Google Scholar 

  • Morris RO (1986) Genes specifying auxin and cytokinin biosynthesis in phytopathogens. Annu Rev Plant Physiol 37:509–538

    Article  CAS  Google Scholar 

  • Nester EW, Gordon MP, Amasino RM et al (1984) Crown gall: a molecular and physiological analysis. Annu Rev Plant Physiol 35:387–413

    Article  CAS  Google Scholar 

  • Nester E, Gordon MP, Kerr A (2005) Agrobacterium tumefaciens. From plant pathology to biotechnology. APS, St Paul

    Google Scholar 

  • Regensburg-Tuïnk AJG, Hooykaas PJJ (1993) Transgenic N.glauca plants expressing bacterial virulence gene virF are converted into hosts for nopaline strains of A.tumefaciens. Nature 363:69–71

    Article  PubMed  Google Scholar 

  • Sheng J, Citovsky V (1996) Agrobacterium-plant cell DNA transport: have virulence proteins, will travel. Plant Cell 8:1699–1710

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Spaink HP, Kondorosi A, Hooykaas PJJ (1998) The Rhizobiaceae. Molecular biology of model plant-associated bacteria. Kluwer, Dordrecht

    Google Scholar 

  • Stachel SE, Messens E, van Montagu M et al (1985) Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318:624–629

    Article  Google Scholar 

  • Stachel SE, Timmerman B, Zambryski P (1986) Generation of single-stranded T-DNA molecules during the initial stages of T-DNA transfer from Agrobacterium tumefaciens to plant cells. Nature 322:706–712

    Article  CAS  Google Scholar 

  • Toro N, Datta A, Carmi OA et al (1989) The Agrobacterium tumefaciens virC1 gene product binds to overdrive, a T-DNA transfer enhancer. J Bacteriol 171:6845–6849

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tzfira T, Citovsky V (2008) Agrobacterium. From biology to biotechnology. Springer, New York

    Book  Google Scholar 

  • Tzfira T, Rhee Y, Chen MH et al (2000) Nucleic acid transport in plant-microbe interactions: the molecules that walk through the walls. Annu Rev Microbiol 54:187–219

    Article  CAS  PubMed  Google Scholar 

  • van Kregten M, Lindhout BI, Hooykaas PJJ et al (2009) Agrobacterium-mediated T-DNA transfer and integration by minimal VirD2 consisting of the relaxase domain and a type IV secretion system translocation signal. Mol Plant-Microbe Interact 22:1356–1365

    Article  PubMed  Google Scholar 

  • Venturi V, Fuqua C (2013) Chemical signaling between plants and plant-pathogenic bacteria. Annu Rev Phytopathol 51:17–37

    Article  CAS  PubMed  Google Scholar 

  • Vergunst AC, Schrammeijer B, den Dulk-Ras A et al (2000) VirB/D4-dependent protein translocation from Agrobacterium into plant cells. Science 290:979–982

    Article  CAS  PubMed  Google Scholar 

  • Vergunst AC, van Lier MCM, den Dulk-Ras A et al (2005) Positive charge is an important feature of the C-terminal transport signal of the VirB/D4-translocated proteins of Agrobacterium. Proc Natl Acad Sci U S A 102:832–837

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Winans SC (1992) Two-way chemical signaling in Agrobacterium -plant interactions. Microbiol Rev 56:12–31

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu J, Oger PM, Schrammeijer B et al (2000) The bases of crown gall tumorigenesis. J Bacteriol 182:3885–3889

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul J. J. Hooykaas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hooykaas, P. (2015). Agrobacterium, The Genetic Engineer. In: Lugtenberg, B. (eds) Principles of Plant-Microbe Interactions. Springer, Cham. https://doi.org/10.1007/978-3-319-08575-3_37

Download citation

Publish with us

Policies and ethics