Skip to main content

Introduction

  • Chapter
  • First Online:
  • 517 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Unbranched \(n\)-alkanes of moderate size prefer an extended all-trans (“zig-zag”) conformation. The chain length at which this preference switches to a folded “hairpin" conformation due to attractive dispersion interactions is a sensitive benchmark for quantum chemical methods. In this thesis, the folding of \(n\)-alkanes is studied by vibrational Raman spectroscopy of cold gaseous \(n\)-alkanes up to a chain length of 21 carbon atoms, prepared in supersonic jet expansions. The first chapter provides a general overview and outlines the structure of the thesis.

My interest in science is to simply find out about the world, and the more I find out the better it is. I like to find out.

Richard Feynman

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2013/advanced-chemistryprize2013.pdf (15 October 2013).

  2. 2.

    The name of the setup is a culinary homage to the Indian discoverer of the Raman-effect, Chandrasekhara Venkata Raman, and stands for classical unrestricted Raman spectroscopy in a jet.

References

  1. C.M. Dobson, Protein folding and misfolding. Nature 426, 884–890 (2003)

    Article  CAS  Google Scholar 

  2. E. Reynaud, Protein misfolding and degenerative diseases. Nature Educ. 3, 28 (2010)

    Google Scholar 

  3. S.K. Burley, G.A. Petsko, in Advances in Protein Chemistry, vol. 39, ed. by C. Anfinsen, J.T. Edsall, F.M. Richards, D.S. Eisenberg, (Academic Press, New York, 1988), pp. 125–189

    Google Scholar 

  4. A. Stone, The Theory of Intermolecular Forces, 2nd edn. (Oxford University Press, Oxford, 2013)

    Book  Google Scholar 

  5. Y. Mo, A critical analysis on the rotation barriers in butane. J. Org. Chem. 75, 2733–2736 (2010)

    Article  CAS  Google Scholar 

  6. W.A. Herrebout, B.J. van der Veken, A. Wang, J.R. Durig, Enthalpy difference between conformers of \(n\)-butane and the potential function governing conformational interchange. J. Phys. Chem. 99, 578–585 (1995)

    CAS  Google Scholar 

  7. J.B. Klauda, B.R. Brooks, A.D. MacKerell, R.M. Venable, R.W. Pastor, An ab initio study on the torsional surface of alkanes and its effect on molecular simulations of alkanes and a DPPC bilayer. J. Phys. Chem. B 109, 5300–5311 (2005)

    CAS  Google Scholar 

  8. D. Gruzman, A. Karton, J.M.L. Martin, Performance of ab initio and density functional methods for conformational equilibria of C\(_n\)H\(_{2n+2}\) alkane isomers (\(n=\) 4–8). J. Phys. Chem. A 113, 11974–11983 (2009)

    CAS  Google Scholar 

  9. R.M. Balabin, Enthalpy difference between conformations of normal alkanes: Raman spectroscopy study of \(n\)-pentane and \(n\)-butane. J. Phys. Chem. A 113, 1012–1019 (2009)

    Google Scholar 

  10. J.M. Goodman, What is the longest unbranched alkane with a linear global minimum conformation? J. Chem. Inf. Comput. Sci. 37, 876–878 (1997)

    CAS  Google Scholar 

  11. L.L. Thomas, T.J. Christakis, W.L. Jorgensen, Conformation of alkanes in the gas phase and pure liquides. J. Phys. Chem. B 110, 21198–21204 (2006)

    CAS  Google Scholar 

  12. S. Grimme, J. Antony, T. Schwabe, C. Mück-Lichtenfeld, Density functional theory with dispersion corrections for supramolecular structures, aggregates, and complexes of (bio)organic molecules. Org. Biomol. Chem. 5, 741–758 (2007)

    Article  CAS  Google Scholar 

  13. T. Schwabe, S. Grimme, Double-hybrid density functionals with long-range dispersion corrections: higher accuracy and extended applicability. Phys. Chem. Chem. Phys. 9, 3397–3406 (2007)

    Article  CAS  Google Scholar 

  14. A. Zehnacker, M.A. Suhm, Chirality recognition between neutral molecules in the gas phase. Angew. Chem. Int. Ed. 47, 6970–6992 (2008)

    Article  CAS  Google Scholar 

  15. A. Zehnacker, M.A. Suhm, Chiralitätserkennung zwischen neutralen Molekülen in der Gasphase. Angew. Chem. 120, 7076–7100 (2008)

    Google Scholar 

  16. A. Wallqvist, D.G. Covell, Free-Energy cost of bending \(n\)-dodecane in aqueous solution, influence of the hydrophobic effect and solvent exposed area. J. Phys. Chem. 99, 13118–13125 (1995)

    Google Scholar 

  17. S. Chakrabarty, B. Bagchi, Self-Organization of \(n\)-alkane chains in water: length dependent crossover from helix and toroid to molten globule. J. Phys. Chem. B 113, 8446–8448 (2009)

    Google Scholar 

  18. K.S. Lee, G. Wegner, Linear and cyclic alkanes (C\(_n\)H\(_{2n+2}\), C\(_n\)H\(_{2n}\)) with \(n>100\), synthesis and evidence for chain-folding. Die Makromol. Chem. Rapid Commun. 6, 203–208 (1985)

    Google Scholar 

  19. G. Ungar, J. Stejny, A. Keller, I. Bidd, M.C. Whiting, The crystallization of ultralong normal paraffins: the onset of chain folding. Science 229, 386–389 (1985)

    Article  CAS  Google Scholar 

  20. CRC Handbook of Chemistry and Physics, ed. by D.R. Lide, 82nd edn, (CRC Press, Boca Raton, 2001)

    Google Scholar 

  21. D.H. Levy, The spectroscopy of very cold gases. Science 214, 263–269 (1981)

    Article  CAS  Google Scholar 

  22. M. Herman, R. Georges, M. Hepp, D. Hurtmans, High resolution Fourier transform spectroscopy of jet-cooled molecules. Int. Rev. Phys. Chem. 19, 277–325 (2000)

    CAS  Google Scholar 

  23. R.G. Snyder, On Raman evidence for conformational order in liquid \(n\)-alkanes. J. Chem. Phys. 76, 3342–3343 (1982)

    CAS  Google Scholar 

  24. C.J. Orendorff, M.W. Ducey Jr, J.E. Pemberton, Quantitative correlation of Raman spectral indicators in determining conformational order in alkyl chains. J. Phys. Chem. A 106, 6991–6998 (2002)

    CAS  Google Scholar 

  25. L. Brambilla, G. Zerbi, Local order in liquid \(n\)-alkanes: evidence from Raman spectroscopic study. Macromolecules 38, 3327–3333 (2005)

    Google Scholar 

  26. N.A. Atamas, A.M. Yaremko, T. Seeger, A. Leipertz, A. Bienko, Z. Latajka, H. Ratajczak, A.J. Barnes, A study of the Raman spectra of alkanes in the Fermi-resonance region. J. Mol. Struct. 708, 189–195 (2004)

    Article  CAS  Google Scholar 

  27. T.N. Wassermann, J. Thelemann, P. Zielke, M.A. Suhm, The stiffness of a fully stretched polyethylene chain: a Raman jet spectroscopy extrapolation. J. Chem. Phys. 131, 161108 (2009)

    Google Scholar 

  28. R.G. Snyder, The structure of chain molecules in the liquid state: low-frequency Raman spectra of \(n\)-alkanes and perfluoro-\(n\)-alkanes. J. Chem. Phys. 76, 3921–3927 (1982)

    CAS  Google Scholar 

  29. R.F. Schaufele, T. Shimanouchi, Longitudinal acoustical vibrations of finite polymethylene chains. J. Chem. Phys. 47, 3605–3610 (1967)

    CAS  Google Scholar 

  30. R.G. Snyder, H.L. Strauss, R. Alamo, L. Mandelkern, Chain-length dependence of interlayer interaction in crystalline \(n\)-alkanes from Raman longitudinal acoustic mode measurements. J. Chem. Phys. 100, 5422–5431 (1994)

    Google Scholar 

  31. G.D. Barrera, S.F. Parker, A.J. Ramirez-Cuesta, P.C.H. Mitchell, The vibrational spectrum and ultimate modulus of polyethylene. Macromolecules 39, 2683–2690 (2006)

    Article  CAS  Google Scholar 

  32. Modern Polymer Spectroscopy, ed. by G. Zerbi, (Wiley-VCH, Weinheim, 1999)

    Google Scholar 

  33. G. Zerbi, M. Gussoni, Defect modes for (200), GGTGG, tight fold re-entry in polyethylene single crystals. Polymer 21, 1129–1134 (1980)

    Article  CAS  Google Scholar 

  34. S. Wolf, C. Schmid, P.C. Hägele, Vibrational analysis of the tight (110) fold in polyethylene. Polymer 31, 1222–1227 (1990)

    Article  CAS  Google Scholar 

  35. G. Ungar, X.B. Zeng, S.J. Spells, Non-integer and mixed integer forms in long \(n\)-alkanes observed by real-time LAM spectroscopy and SAXS. Polymer 41, 8775–8780 (2000)

    Article  CAS  Google Scholar 

  36. R. Eckel, M. Buback, G.R. Strobl, Untersuchung der druckinduzierten Kristallisation von Polyäthylen mit Hilfe einer neuen Raman-Hochdruckzelle. Colloid Polym. Sci. 259, 326–334 (1981)

    Article  CAS  Google Scholar 

  37. G.R. Strobl, W. Hagedorn, Raman spectroscopic method for determining the crystallinity of polyethylene. J. Polym Sci. Polym. Phys. Ed. 16, 1181–1193 (1978)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils Olaf Bernd Lüttschwager .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lüttschwager, N.O.B. (2014). Introduction. In: Raman Spectroscopy of Conformational Rearrangements at Low Temperatures. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-08566-1_1

Download citation

Publish with us

Policies and ethics