Skip to main content

Recent Progress on Favard Length Estimates for Planar Cantor Sets

  • Conference paper
  • First Online:

Part of the book series: Abel Symposia ((ABEL,volume 9))

Abstract

The Favard length of a planar set E is the average length of its one-dimensional projections. If E is a purely unrectifiable self-similar set of Hausdorff dimension 1 in the plane, a theorem of Besicovitch asserts that E has Favard length 0. An interesting open question concerns quantitative estimates on the decay of the Favard length of finite iterations of such sets. Such estimates are of interest in geometric measure theory, ergodic theory and complex analysis. We review the recent progress on this question, including work by Nazarov-Peres-Volberg, Bond-Volberg, Laba-Zhai, and Bond-Laba-Volberg.

The author is supported in part by NSERC Discovery Grant 22R80520.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This was recently solved by Hochman [10].

References

  1. Bateman, M., Volberg, A.: An estimate from below for the Buffonneedle probability of the four-corner Cantor set. Math. Res. Lett. 17, 959–967 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bond, M.: Combinatorial and Fourier analytic L 2 methods for Buffon’s needle problem. http://bondmatt.wordpress.com/2011/03/02/thesis-second-complete-draft/

  3. Bond, M., Łaba, I., Volberg, A.: Buffon needle estimates for rational product Cantor sets. Amer. J. Math. 136, 357–391 (2014), arXiv:1109.1031

    Google Scholar 

  4. Bond, M., Volberg, A.: Buffon needle lands in \(\epsilon\)-neighborhood of a 1-dimensional Sierpinski Gasket with probability at most \(\vert \log \epsilon \vert ^{-c}\). C. R. Math. 348(11–12), 653–656 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bond, M., Volberg, A.: Buffon’s needle landing near Besicovitch irregular self-similar sets. Indiana Univ. Math. J. 61, 2085–2109 (2012). http://arxiv.org/abs/0912.5111

  6. Bourgain, J.: On triples in arithmetic progressions. Geom. Funct. Anal. 9, 968–984 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. de Bruijn, N.G.: On the factorization of cyclic groups. Indag. Math. 15, 370–377 (1953)

    Google Scholar 

  8. Conway, J.H., Jones, A.J.: Trigonometric diophantine equations (On vanishing sums of roots of unity). Acta Arith. 30, 229–240 (1976)

    MATH  MathSciNet  Google Scholar 

  9. Coppersmith, D., Steinberger, J.P.: On the entry sum of cyclotomic arrays. Integers Electron. J. Comb. Addit. Number Theory 6, # A26 (2006)

    Google Scholar 

  10. Hochman, M.: Ann. Math. 180, 773–822 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kenyon, R.: Projecting the one-dimensional Sierpiński gasket. Israel J. Math. 79, 221–238 (2006)

    MathSciNet  Google Scholar 

  12. Łaba, I., Zhai, K.: The Favard length of product Cantor sets. Bull. Lond. Math. Soc. 42, 997–1009 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  13. Lagarias, J.C., Wang, Y.: Tiling the line with translates of one tile. Invent. Math. 124, 341–365 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  14. Lagarias, J.C., Wang, Y.: Spectral sets and factorization of finite abelian groups. J. Funct. Anal. 145, 73–98 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lam, T.Y., Leung, K.H.: On vanishing sums of roots of unity. J. Algebra 224, 91–109 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. Mann, H.B.: On linear relations between roots of unity. Mathematika 12(2), 107–117 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  17. Mattila, P.: Orthogonal projections, Riesz capacities, and Minkowski content. Indiana Univ. Math. J. 124, 185–198 (1990)

    Article  MathSciNet  Google Scholar 

  18. Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces. Cambridge University Press, Cambridge/New York (1995)

    Book  MATH  Google Scholar 

  19. Nazarov, F., Peres, Y., Volberg, A.: The power law for the Buffon needle probability of the four-corner Cantor set. Algebra i Analiz 22, 82–97 (2010) (Translation in St. Petersb. Math. J. 22, 6172 (2011))

    Google Scholar 

  20. Peres, Y., Solomyak, B.: How likely is buffon’s needle to fall near a planar Cantor set? Pac. J. Math. 24, 473–496 (2002)

    Article  MathSciNet  Google Scholar 

  21. Poonen, B., Rubinstein, M.: Number of intersection points made by the diagonals of a regular polygon. SIAM J. Discret. Math. 11, 135–156 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  22. Rédei, L.: Über das Kreisteilungspolynom. Acta Math. Hungar. 5, 27–28 (1954)

    MATH  Google Scholar 

  23. Rédei, L.: Natürliche Basen des Kreisteilungskörpers. Abh. Math. Sem. Univ. Hambg. 23, 180–200 (1959)

    Article  MATH  Google Scholar 

  24. Schoenberg, I.J.: A note on the cyclotomic polynomial. Mathematika 11, 131–136 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  25. Tao, T.: A quantitative version of the Besicovitch projection theorem via multiscale analysis. Proc. Lond. Math. Soc. 98, 559–584 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  26. Tolsa, X.: Analytic capacity, rectifiability, and the Cauchy integral. In: Proceedings of the ICM 2006, Madrid

    Google Scholar 

  27. Waldschmidt, M.: Diophantine Approximation on Linear Algebraic Groups: Transcendence Properties of the Exponential Function in Several Variables. Springer, Berlin/New York (2000)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Izabella Łaba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Łaba, I. (2015). Recent Progress on Favard Length Estimates for Planar Cantor Sets. In: Gröchenig, K., Lyubarskii, Y., Seip, K. (eds) Operator-Related Function Theory and Time-Frequency Analysis. Abel Symposia, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-08557-9_5

Download citation

Publish with us

Policies and ethics