Advertisement

Automated Registration of 3D TEE Datasets of the Descending Aorta for Improved Examination and Quantification of Atheromas Burden

  • M. C. Carminati
  • C. Piazzese
  • L. Weinert
  • W. Tsang
  • G. Tamborini
  • M. Pepi
  • R. M. Lang
  • E. G. Caiani
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8545)

Abstract

We propose a robust and efficient approach for the reconstruction of the descending aorta from contiguous 3D transesophageal echocardiographic (TEE) images. It is based on an ad hoc protocol, designed to acquire ordered and partially overlapped 3D TEE datasets, followed by automated image registration that relies on this a priori knowledge. The method was validated using artificially derived misaligned images, and then applied to 14 consecutive patients. Both qualitative and quantitative results demonstrated the potential feasibility and accuracy of the proposed approach. Its clinical applicability could improve the assessment of aortic total plaque burden from 3D TEE images.

Keywords

Transesophageal Echocardiography Acquisition Protocol Normalize Cross Correlation Automate Registration Aortic Plaque 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hogue, C.W., Murphy, S.F., Schechtman, K.B., Dávila-Román, V.G.: Risk factors for early or delayed stroke after cardiac surgery. Circulation 100(6), 642–647 (1999)CrossRefGoogle Scholar
  2. 2.
    Kronzon, I., Tunick, P.A.: Aortic atherosclerotic disease and stroke. Circulation 114(1), 63–75 (2006)CrossRefGoogle Scholar
  3. 3.
    Bainbridge, D.: 3D imaging for aortic plaque assessment. In: Seminars in Cardiothoracic and Vascular Anesthesia, vol. 9, pp. 163–165. Sage Publications (2005)Google Scholar
  4. 4.
    Kutz, S.M., Lee, V.S., Tunick, P.A., Krinsky, G.A., Kronzon, I.: Atheromas of the thoracic aorta: A comparison of transesophageal echocardiography and breath-hold gadolinium-enhanced 3-dimensional magnetic resonance angiography. Journal of the American Society of Echocardiography 12(10), 853–858 (1999)CrossRefGoogle Scholar
  5. 5.
    Harloff, A., Brendecke, S.M., Simon, J., Assefa, D., Wallis, W., Helbing, T., Weber, J., Frydrychowicz, A., Vach, W., Weiller, C., et al.: 3D MRI provides improved visualization and detection of aortic arch plaques compared to transesophageal echocardiography. Journal of Magnetic Resonance Imaging 36(3), 604–611 (2012)CrossRefGoogle Scholar
  6. 6.
    Piazzese, C., Tsang, W., Sotaquira, M., Lang, R.M., Caiani, E.G.: Semi-automated detection and quantification of aortic atheromas from three-dimensional transesophageal echocardiography. In: Computing in Cardiology Conference (CinC), pp. 13–16. IEEE (2013)Google Scholar
  7. 7.
    Ibanez, L., Schroeder, W., Ng, L., Cates, J.: The ITK Software Guide, 1st edn. Kitware, Inc. (2003), http://www.itk.org/ItkSoftwareGuide.pdf, ISBN 1-930934-10-6
  8. 8.
    Cohen, A., Tzourio, C., Bertrand, B., Chauvel, C., Bousser, M., Amarenco, P., et al.: Aortic plaque morphology and vascular events a follow-up study in patients with ischemic stroke. Circulation 96(11), 3838–3841 (1997)CrossRefGoogle Scholar
  9. 9.
    Vaduganathan, P., Ewton, A., Nagueh, S.F., Weilbaecher, D.G., Safi, H.J., Zoghbi, W.A.: Pathologic correlates of aortic plaques, thrombi and mobile aortic debris imaged in vivo with transesophageal echocardiography. Journal of the American College of Cardiology 30(2), 357–363 (1997)CrossRefGoogle Scholar
  10. 10.
    Fazio, G.P., Redberg, R.F., Winslow, T., Schiller, N.B.: Transesophageal echocardiographically detected atherosclerotic aortic plaque is a marker for coronary artery disease. Journal of the American College of Cardiology 21(1), 144–150 (1993)CrossRefGoogle Scholar
  11. 11.
    Vegas, A., Meineri, M.: Three-dimensional transesophageal echocardiography is a major advance for intraoperative clinical management of patients undergoing cardiac surgery: a core review. Anesthesia & Analgesia 110(6), 1548–1573 (2010)CrossRefGoogle Scholar
  12. 12.
    Housden, R.J., Ma, Y., Arujuna, A., Nijhof, N., Cathier, P., Gijsbers, G., Bullens, R., Gill, J., Rinaldi, C.A., Parish, V., et al.: Extended-field-of-view three-dimensional transesophageal echocardiography using image-based x-ray probe tracking. Ultrasound in Medicine & Biology 39(6), 993–1005 (2013)CrossRefGoogle Scholar
  13. 13.
    Rajpoot, K., Grau, V., Noble, J.A., Szmigielski, C., Becher, H.: Multiview fusion 3D echocardiography: improving the information and quality of real-time 3D echocardiography. Ultrasound in Medicine & Biology 37(7), 1056–1072 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • M. C. Carminati
    • 1
    • 2
  • C. Piazzese
    • 1
    • 3
  • L. Weinert
    • 4
  • W. Tsang
    • 5
  • G. Tamborini
    • 2
  • M. Pepi
    • 2
  • R. M. Lang
    • 4
  • E. G. Caiani
    • 1
  1. 1.Dipartimento di Elettronica, Informazione e BioingegneriaPolitecnico di MilanoItaly
  2. 2.Centro Cardiologico Monzino IRCSSMilanoItaly
  3. 3.Università della Svizzera ItalianaLuganoSwitzerland
  4. 4.Noninvasive Cardiac Imaging Laboratories, Department of CardiologyUniversity of ChicagoUSA
  5. 5.Division of CardiologyUniversity of TorontoCanada

Personalised recommendations