Advertisement

Non-rigid Image Registration with Equally Weighted Assimilated Surface Constraint

  • Cheng Zhang
  • Gary E. Christensen
  • Martin J. Murphy
  • Elisabeth Weiss
  • Jeffrey F. Williamson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8545)

Abstract

An important research problem in image-guided radiation therapy is how to accurately register daily onboard Cone-beam CT (CBCT) images to higher quality pretreatment fan-beam CT (FBCT) images. Assuming the organ segmentations are both available on CBCT and FBCT images, methods have been proposed to use them to help the intensity-driven image registration. Due to the low contrast between soft-tissue structures exhibited in CBCT, the interobserver contouring variability (expressed as standard deviation) can be as large as 2-3 mm and varies systematically with organ, and relative location on each organ surface. Therefore the inclusion of the segmentations into registration may degrade registration accuracy. To address this issue we propose a surface assimilation method that estimates a new surface from the manual segmentation from a priori organ shape knowledge and the interobserver segmentation error. Our experiment results show the proposed method improves registration accuracy compared to previous methods.

Keywords

Image Registration Manual Segmentation Registration Algorithm Target Registration Error Surface Registration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balik, S., Weiss, E., Jan, N., Roman, N., Sleeman, W.C., Fatyga, M., Christensen, G.E., Zhang, C., Murphy, M.J., Lu, J., Keall, P., Williamson, J.F., Hugo, G.D.: Evaluation of 4- dimensional computed tomography to 4-dimensional cone-beam computed tomography deformable image registration for lung cancer adaptive radiation therapy. International Journal of Radiation Oncology*Biology*Physics 86(2), 372–379 (2013)CrossRefGoogle Scholar
  2. 2.
    Christensen, G., Carlson, B., Chao, K., Yin, P., Grigsby, P., Nguyen, K., Dempsey, J., Lerma, F., Bae, K., Vannier, M., et al.: Image-based dose planning of intracavitary brachytherapy: registration of serial-imaging studies using deformable anatomic templates. International Journal of Radiation Oncology Biology Physics 51(1), 227–243 (2001)CrossRefGoogle Scholar
  3. 3.
    Cootes, T., Taylor, C., Cooper, D., Graham, J., et al.: Active shape models-their training and application. Computer Vision and Image Understanding 61(1), 38–59 (1995)CrossRefGoogle Scholar
  4. 4.
    Craven, P., Wahba, G.: Smoothing noisy data with spline functions. Numerische Mathematik 31(4), 377–403 (1978)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Davies, R.H., Twining, C.J., Taylor, C.J.: Statistical models of shape - optimisation and evaluation. Springer (2008)Google Scholar
  6. 6.
    Dawson, L.A., Sharpe, M.B.: Image-guided radiotherapy: rationale, benefits, and limitations. The Lancet Oncology 7(10), 848–858 (2006)CrossRefGoogle Scholar
  7. 7.
    Fitzpatrick, J., West, J., Maurer Jr., C.R.: Predicting error in rigid-body point-based registration. IEEE Transactions on Medical Imaging 17(5), 694–702 (1998)CrossRefGoogle Scholar
  8. 8.
    Greene, W., Chelikani, S., Purushothaman, K., Knisely, J., Chen, Z., Papademetris, X., Staib, L., Duncan, J.: Constrained non-rigid registration for use in image-guided adaptive radiotherapy. Medical Image Analysis 13(5), 809–817 (2009)CrossRefGoogle Scholar
  9. 9.
    Kalnay, E.: Atmospheric modeling, data assimilation, and predictability. Cambridge University Press (2003)Google Scholar
  10. 10.
    Lu, C., Chelikani, S., Papademetris, X., Knisely, J.P., Milosevic, M.F., Chen, Z., Jaffray, D.A., Staib, L.H., Duncan, J.S.: An integrated approach to segmentation and nonrigid registration for application in image-guided pelvic radiotherapy. Medical Image Analysis 15(5), 772–785 (2011)CrossRefGoogle Scholar
  11. 11.
    Remeijer, P., Rasch, C., Lebesque, J.V., van Herk, M.: A general methodology for three-dimensional analysis of variation in target volume delineation. Medical Physics 26(6), 931–940 (1999)CrossRefGoogle Scholar
  12. 12.
    Risholm, P., Janoos, F., Norton, I., Golby, A., Wells III, W.: Bayesian characterization of uncertainty in intra-subject non-rigid registration. Med. Image Anal. 17(5), 538–555 (2013)CrossRefGoogle Scholar
  13. 13.
    Rueckert, D., Sonoda, L., Hayes, C., Hill, D., Leach, M., Hawkes, D.: Nonrigid registration using free-form deformations: application to breast mr images. IEEE Transactions on Medical Imaging 18(8), 712–721 (1999)CrossRefGoogle Scholar
  14. 14.
    Wahba, G.: Spline models for observational data, vol. 59. Society for Industrial Mathematics (1990)Google Scholar
  15. 15.
    Wang, Y.: Smoothing splines: methods and applications. Taylor & Francis US (2011)Google Scholar
  16. 16.
    Wu, J., Murphy, M.J., Weiss, E., Sleeman IV, W.C., Williamson, J.: Development of a population-based model of surface segmentation uncertainties for uncertainty-weighted deformable image registrations. Medical Physics 37(2), 607–614 (2010)CrossRefGoogle Scholar
  17. 17.
    Zhang, C., Christensen, G.E., Kurtek, S., Srivastava, A., Murphy, M.J., Weiss, E., Bai, E., Williamson, J.F.: SUPIR: Surface uncertainty-penalized, non-rigid image registration for pelvic CT imaging. In: Dawant, B.M., Christensen, G.E., Fitzpatrick, J.M., Rueckert, D. (eds.) WBIR 2012. LNCS, vol. 7359, pp. 236–245. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  18. 18.
    Zhou, J., Kim, S., Jabbour, S., Goyal, S., Haffty, B., Chen, T., Levinson, L., Metaxas, D., Yue, N.J.: A 3d global-to-local deformable mesh model based registration and anatomy-constrained segmentation method for image guided prostate radiotherapy. Medical Physics 37(3), 1298–1308 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Cheng Zhang
    • 1
  • Gary E. Christensen
    • 1
  • Martin J. Murphy
    • 2
  • Elisabeth Weiss
    • 2
  • Jeffrey F. Williamson
    • 2
  1. 1.Department of Electrical and Computer EngineeringUniversity of IowaIowa CityUSA
  2. 2.Department of Radiation OncologyVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations