Stepwise Inverse Consistent Euler’s Scheme for Diffeomorphic Image Registration

  • Akshay Pai
  • Stefan Sommer
  • Sune Darkner
  • Lauge Sørensen
  • Jon Sporring
  • Mads Nielsen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8545)


Theoretically, inverse consistency in an image registration problem can be achieved by employing a diffeomorphic scheme that uses transformations parametrized by stationary velocity fields (SVF). The displacement from a given SVF, formulated as a series of self compositions of a transformation function, can be obtained by Euler integration in the time domain. However in practice, the discrete time integration produces results that are inverse inconsistent, and inverse consistency in the final solution needs to be explicitly ensured. One way of achieving this is to penalize the endpoint displacement offset obtained by evaluating a composition of the transformation with its inverse at an arbitrary point. In this paper, we propose a variation in which the displacement penalization is required only in the first composition step of the transformation thereby bringing down the computational complexity. We compare these two ways of enforcing inverse consistency by applying the registration framework on four pairs of brain magnetic resonance images. We observe that the proposed stepwise scheme maintains both precision and level of inverse consistency similar to the endpoint scheme.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Miller, M.: Computational anatomy: shape, growth, and atrophy comparison via diffeomorphisms. NeuroImage 23(1), 19–33 (2004)CrossRefGoogle Scholar
  2. 2.
    Tagare, H.D., Groisser, D., Skrinjar, O.: Symmetric non-rigid registration: A geometric theory and some numerical techniques. Journal of Mathematical Imaging and Vision 34(1), 61–88 (2009)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Beg, M., Miller, M., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int. J. Comput. Vis. 61, 139–157 (2005)CrossRefGoogle Scholar
  4. 4.
    Sommer, S., Lauze, F., Nielsen, M., Pennec, X.: Sparse multi-scale diffeomorphic registration: the kernel bundle framework. J. of Mathematical Imaging and Vision 46(3), 292–308 (2012)CrossRefGoogle Scholar
  5. 5.
    Arsigny, V., Commowick, O., Pennec, X., Ayache, N.: A log-euclidean framework for statistics on diffeomorphisms. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 924–931. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Ashburner, J.: A fast diffeomorphic image registration algorithm. NeuroImage 38(1), 95–113 (2007)CrossRefGoogle Scholar
  7. 7.
    Lorenzi, M., Pennec, X.: Geodesics, parallel transport and one-parameter subgroups for diffeomorphic image registration. International Journal of Computer Vision 105, 111–127 (2013)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Bossa, M., Zacur, E., Olmos, S., for the Alzheimer’s Disease Neuroimaging Initiative: Tensor-based morphometry with stationary velocity field diffeomorphic registration: application to adni. NeuroImage 51(3), 956–969 (2010)Google Scholar
  9. 9.
    Hernandez, M., Bossa, M.N., Olmos, S.: Registration of anatomical images using paths of diffeomorphisms parameterized with stationary vector field flows. Int. J. Comput. Vis. 85, 291–306 (2009)CrossRefGoogle Scholar
  10. 10.
    Christensen, G.E., Johnson, H.J.: Consistent image registration. IEEE Transactions on Medical Imaging 20, 568–582 (2001)CrossRefGoogle Scholar
  11. 11.
    Rueckert, D., Aljabar, P., Heckemann, R.A., Hajnal, J.V., Hammers, A.: Diffeomorphic registration using B-splines. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 702–709. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Modat, M., Daga, P., Cardoso, M.J., Ourselin, S.: Parametric non-rigid registration using a stationary velocity field. In: IEEE Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA), pp. 145–150 (2012)Google Scholar
  13. 13.
    Leow, A., Huang, S.-C., Geng, A., Becker, J., Davis, S., Toga, A., Thompson, P.: Inverse consistent mapping in 3D deformable image registration: Its construction and statistical properties. In: Christensen, G.E., Sonka, M. (eds.) IPMI 2005. LNCS, vol. 3565, pp. 493–503. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Han, X., Hibbard, L.S., Willcut, V.: An efficient inverse-consistent diffeomorphic image registration method for prostate adaptive radiotherapy. In: Madabhushi, A., Dowling, J., Yan, P., Fenster, A., Abolmaesumi, P., Hata, N. (eds.) MICCAI 2010. LNCS, vol. 6367, pp. 34–41. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C.: Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain. Medical Image Analysis 12(1), 26–41 (2009)CrossRefGoogle Scholar
  16. 16.
    Darkner, S., Sporring, J.: Generalized partial volume: An inferior density estimator to parzen windows for normalized mutual information. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 436–447. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Pai, A., Sørensen, L., Darkner, S., Mysling, P., Jorgensen, D., Dam, E., Lillholm, M., Oh, J., Chen, G., Suhy, J., Sporring, J., Nielsen, M.: Cube propagation for focal brain atrophy estimation. In: IEEE Symposium on Biomedical Imaging (2013)Google Scholar
  18. 18.
    Rueckert, D., Sonoda, L., Hayes, C., Hill, D., Leach, M.O., Hawkes, D.: Non-rigid registration using free-form deformations: Application to breast MR images. IEEE Transactions on Medical Imaging 18(8), 712–721 (1999)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Akshay Pai
    • 1
  • Stefan Sommer
    • 1
  • Sune Darkner
    • 1
  • Lauge Sørensen
    • 1
  • Jon Sporring
    • 1
  • Mads Nielsen
    • 1
    • 2
  1. 1.DIKUUniversity of CopenhagenCopenhagenDenmark
  2. 2.Biomediq A/SCopenhagenDenmark

Personalised recommendations