Skip to main content

Registration Fusion Using Markov Random Fields

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8545))

Abstract

Image registration is a ubiquitous technique in medical imaging. However, finding correspondences reliably between images is a difficult task since the registration problem is ill-posed and registration algorithms are only capable of finding local optima. This makes it challenging to find a suitable registration method and parametrization for a specific application. To alleviate such problems, multiple registrations can be fused which is typically done by weighted averaging, which is sensitive to outliers and can not guarantee that registrations improve. In contrast, in this work we present a Markov random field based technique which fuses registrations by explicitly minimizing local dissimilarities of deformed source and target image, while penalizing non-smooth deformations. We additionally propose a registration propagation technique which combines multiple registration hypotheses which are obtained from different indirect paths in a set of mutually registered images. Our fused registrations are experimentally shown to improve pair-wise correspondences in terms of average deformation error (ADE) and target registration error (TRE) as well as improving post-registration segmentation overlap.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fischer, B., Modersitzki, J.: Ill-posed medicine - an introduction to image registration. Inverse Probl. 24(3), 1–19 (2008)

    Article  MathSciNet  Google Scholar 

  2. Glocker, B., Komodakis, N., Tziritas, G., Navab, N., Paragios, N.: Dense image registration through MRFs and efficient linear programming. Med. Image Anal. 12(6), 731–741 (2008)

    Article  Google Scholar 

  3. Thirion, J.P.: Image matching as a diffusion process: an analogy with Maxwell’s demons. Med. Image Anal. 2(3), 243–260 (1998)

    Article  Google Scholar 

  4. Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Diffeomorphic demons: efficient non-parametric image registration. Neuroimage 45(1 suppl.), 61–72 (2009)

    Article  Google Scholar 

  5. Cachier, P., Ayache, N.: Regularization in Image Non-Rigid Registration: I. Trade-off between Smoothness and Intensity Similarity. Technical report, INRIA (2001)

    Google Scholar 

  6. Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Symmetric log-domain diffeomorphic Registration: A demons-based approach. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 754–761. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Avants, B., Epstein, C., Grossman, M., Gee, J.: Symmetric Diffeomorphic Image Registration with Cross-Correlation: Evaluating Automated Labeling of Elderly and Neurodegenerative Brain. Med. Image Anal. 12(1), 26–41 (2008)

    Article  Google Scholar 

  8. Keysers, D., Unger, W.: Elastic Image Matching is NP-complete. Pattern Recognition Letters 24, 445–453 (2003)

    Article  MATH  Google Scholar 

  9. Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans. Med. Imaging 18(8), 712–721 (1999)

    Article  Google Scholar 

  10. Schapire, R.E.: The strength of weak learnability. Machine Learning 5(2), 197–227 (1990)

    Google Scholar 

  11. Heckemann, R.A., Hajnal, J.V., Aljabar, P., Rueckert, D., Hammers, A.: Automatic anatomical brain MRI segmentation combining label propagation and decision fusion. Neuroimage 33(1), 115–126 (2006)

    Article  Google Scholar 

  12. Lempitsky, V., Roth, S., Rother, C.: FusionFlow: Discrete-continuous optimization for optical flow estimation. IEEE Comput. Vis. Pattern Recognit., 1–8 (2008)

    Google Scholar 

  13. Iglesias, J.E., Karssemeijer, N.: Robust initial detection of landmarks in film-screen mammograms using multiple FFDM atlases. IEEE Trans. Med. Imaging 28(11), 1815–1824 (2009)

    Article  Google Scholar 

  14. Santemiz, P., Spreeuwers, L.J., Veldhuis, R.N.J.: Automatic landmark detection and face recognition for side-view face images. In: Int. Conf. Biometrics Spec. Interes. Gr. Lecture Notes in Informatics (LNI) - Proceedings, pp. 337–344 (2013)

    Google Scholar 

  15. Gass, T., Székely, G., Goksel, O.: Semi-supervised Segmentation Using Multiple Segmentation Hypotheses from a Single Atlas. In: Menze, B.H., Langs, G., Lu, L., Montillo, A., Tu, Z., Criminisi, A. (eds.) MCV 2012. LNCS, vol. 7766, pp. 29–37. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  16. Cachier, P., Bardinet, E., Dormont, D., Pennec, X., Ayache, N.: Iconic feature based nonrigid registration: the PASHA algorithm. Comput. Vis. Image Underst. 89(2-3), 272–298 (2003)

    Article  MATH  Google Scholar 

  17. Cardoso, M.J., Modat, M., Ourselin, S., Keihaninejad, S., Cash, D.: Multi-STEPS: Multi-label similarity and truth estimation for propagated segmentations. In: Math. Methods Biomed. Image Anal., pp. 153–158 (2012)

    Google Scholar 

  18. Kolmogorov, V., Zabih, R.: What Energy Functions Can Be Minimized via Graph Cuts. IEEE Trans. Pattern Anal. Mach. Intell. 26(4), 147–159 (2004)

    Article  Google Scholar 

  19. Kolmogorov, V.: Convergent Tree-Reweighted Message Passing for Energy Minimization. IEEE Trans. Pattern Anal. Mach. Intell. 28, 1568–1583 (2006)

    Article  Google Scholar 

  20. Christensen, G.E., Rabbitt, R.D., Miller, M.I., Joshi, S.C., Grenander, U., Coogan, T.A.: Topological Properties of Smooth Anatomic Maps. In: Inf. Process. Med. Imaging, pp. 101–112. Springer (1995)

    Google Scholar 

  21. Myronenko, A., Song, X.: Intensity-based image registration by minimizing residual complexity. IEEE Trans. Med. Imaging 29(11), 1882–1891 (2010)

    Article  Google Scholar 

  22. Myronenko, A.: https://sites.google.com/site/myronenko/software

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Gass, T., Szekely, G., Goksel, O. (2014). Registration Fusion Using Markov Random Fields. In: Ourselin, S., Modat, M. (eds) Biomedical Image Registration. WBIR 2014. Lecture Notes in Computer Science, vol 8545. Springer, Cham. https://doi.org/10.1007/978-3-319-08554-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08554-8_22

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08553-1

  • Online ISBN: 978-3-319-08554-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics