Advertisement

4D Liver Ultrasound Registration

  • Jyotirmoy Banerjee
  • Camiel Klink
  • Edward D. Peters
  • Wiro J. Niessen
  • Adriaan Moelker
  • Theo van Walsum
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8545)

Abstract

In this paper we present a rigid registration approach for 4D ultrasound (US) datasets, where images are registered over time. The 3D registration approach preceding the 4D registration consists of two main steps - block-matching and outlier rejection. The outlier rejection step removes the spurious matchings’ from the block-matching module and ensures inverse consistency. For 4D registration, we perform registration of consecutive US volumes over the time series. Transformation between any two frames is estimated by taking the product of all the intermediate transforms. To avoid accumulation of error over the series of transformations, a long range feedback mechanism is proposed. A mean total registration error of 1 mm is achieved across six 4D ultrasound sequences of human liver with an execution speed of 10 Hz.

Keywords

Consecutive Frame Registration Error Replicator Dynamic Geometric Distance Registration Result 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vijayan, S., Klein, S., Hofstad, E., Lindseth, F., Ystgaard, B., Langø, T.: Validation of a non-rigid registration method for motion compensation in 4D ultrasound of the liver. In: IEEE ISBI2013 (2013), Work done in collaboration with NTNU/SINTEF, Trondheim, NorwayGoogle Scholar
  2. 2.
    Shi, W., Jantsch, M., Aljabar, P., Pizarro, L., Bai, W., Wang, H., O’Regan, D.P., Zhuang, X., Rueckert, D.: Temporal sparse free-form deformations. Medical Image Analysis 17(7), 779–789 (2013)CrossRefGoogle Scholar
  3. 3.
    Øye, O.K., Wein, W., Ulvang, D.M., Matre, K., Viola, I.: Real time image-based tracking of 4D ultrasound data. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part I. LNCS, vol. 7510, pp. 447–454. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Commowick, O., Wiest-Daesslé, N., Prima, S.: Block-matching strategies for rigid registration of multimodal medical images. In: ISBI, pp. 700–703 (2012)Google Scholar
  5. 5.
    Albarelli, A., Bulò, S.R., Torsello, A., Pelillo, M.: Matching as a non-cooperative game. In: ICCV, pp. 1319–1326 (2009)Google Scholar
  6. 6.
    Arun, K.S., Huang, T.S., Blostein, S.D.: Least-squares fitting of two 3-D point sets. IEEE Trans. Pattern Anal. Mach. Intell. 9(5), 698–700 (1987)CrossRefGoogle Scholar
  7. 7.
    Torresani, L., Kolmogorov, V., Rother, C.: A dual decomposition approach to feature correspondence. IEEE Trans. Pattern Anal. Mach. Intell. 35(2), 259–271 (2013)CrossRefGoogle Scholar
  8. 8.
    Pavan, M., Pelillo, M.: Dominant sets and pairwise clustering. IEEE Trans. Pattern Anal. Mach. Intell. 29(1), 167–172 (2007)CrossRefGoogle Scholar
  9. 9.
    Weibull, J.W.: Evolutionary Game Theory. MIT Press (1995)Google Scholar
  10. 10.
    Klein, S., Staring, M., Murphy, K., Viergever, M.A., Pluim, J.P.W.: Elastix: A toolbox for intensity-based medical image registration. IEEE Trans. Med. Imaging 29(1), 196–205 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Jyotirmoy Banerjee
    • 1
    • 2
  • Camiel Klink
    • 1
  • Edward D. Peters
    • 2
  • Wiro J. Niessen
    • 1
    • 2
  • Adriaan Moelker
    • 1
  • Theo van Walsum
    • 1
    • 2
  1. 1.Dept. of RadiologyErasmus MCRotterdamThe Netherlands
  2. 2.Dept. of Medical InformaticsErasmus MCRotterdamThe Netherlands

Personalised recommendations