Advertisement

A New Similarity Metric for Groupwise Registration of Variable Flip Angle Sequences for Improved T10 Estimation in DCE-MRI

  • Andre Hallack
  • Michael A. Chappell
  • Mark J. Gooding
  • Julia A. Schnabel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8545)

Abstract

Relaxation time (T 10) estimation using variable flip angle sequences is a key step for pharmacokinetic (PK) analysis of tumours in DCE-MRI exams. In this study, the effects of motion within flip angle sequences on the T 10 and subsequent K trans and k ep estimation were examined. It was found that errors in T 10 estimation caused by motion had a significant impact on subsequent PK analysis. A new similarity metric, based on the T 10 regression error, for groupwise motion correction of variable flip angle sequences is proposed and compared against Groupwise Normalized Mutual Information (GNMI). In rigid registration experiments on simulated data, the new metric outperformed GNMI, showing an improvement alignment of over 14% in terms of average target registration error, which is also reflected by a lower T 10 estimation error. Finally, registration was applied to 46 clinical sequences to identify the average amount of motion found in this type of acquisition; this showed an estimated displacement of 0.98mm, which could lead to over 25% K trans estimation error if motion were not corrected.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bhatia, K.K., Hajnal, J., Hammers, A., Rueckert, D.: Similarity metrics for groupwise non-rigid registration. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 544–552. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Bhushan, M., Schnabel, J.A., Risser, L., Heinrich, M.P., Brady, J.M., Jenkinson, M.: Motion correction and parameter estimation in dceMRI sequences: Application to colorectal cancer. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part I. LNCS, vol. 6891, pp. 476–483. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Bochkanov, S.: Alglib (2010), http://mloss.org/software/view/231/
  4. 4.
    Buonaccorsi, G.A., Roberts, C., Cheung, S., Watson, Y., O’Connor, J.B.P., Davies, K., Jackson, A., Jayson, G.C., Parker, G.J.M.: Comparison of the performance of tracer kinetic model-driven registration for dynamic contrast enhanced MRI using different models of contrast enhancement. Acad. Radiol. 13, 1112–1123 (2006)CrossRefGoogle Scholar
  5. 5.
    Deoni, S.C.L., Rutt, B.K., Peters, T.M.: Rapid combined T1 and T2 mapping using gradient recalled acquisition in the steady state. Magn. Reson. Med. 49, 515–526 (2003)CrossRefGoogle Scholar
  6. 6.
    Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multimodality image registration by maximization of mutual information. IEEE Trans. Med. Imag. 16, 187–198 (1997)CrossRefGoogle Scholar
  7. 7.
    Orton, M.R., D’Arcy, J.A., Walker-Samuel, S., Hawkes, D.J., Atkinson, D., Collins, D.J., Leach, M.O.: Computationally efficient vascular input function models for quantitative kinetic modelling using DCE-MRI. Phys. Med. Biol. 53, 1225–1239 (2008)CrossRefGoogle Scholar
  8. 8.
    Studholme, C., Hill, D.L.G., Hawkes, D.J.: An overlap invariant entropy measure of 3D medical image alignment. Patt. Rec. 32, 71–86 (1999)CrossRefGoogle Scholar
  9. 9.
    Tanner, L.N.: Functional Imaging Markers for Tumour Characterisation. PhD thesis, University of Oxford (2010)Google Scholar
  10. 10.
    Paul, S.T.: Modeling tracer kinetics in dynamic gd-dtpa mr imaging. J. Magn. Reson. Imaging 7, 91–101 (1997)CrossRefGoogle Scholar
  11. 11.
    Yankeelov, T.E., Gore, J.C.: Dynamic contrast enhanced magnetic resonance imaging in oncology: theory, data acquisition, analysis, and examples. Curr. Med. Imaging Rev. 3, 91 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Andre Hallack
    • 1
  • Michael A. Chappell
    • 1
  • Mark J. Gooding
    • 2
  • Julia A. Schnabel
    • 1
  1. 1.Institute of Biomedical EngineeringUniversity of OxfordOxfordUK
  2. 2.Mirada MedicalOxfordUK

Personalised recommendations