Skip to main content

Consolidation of Carrara Marble by Hydroxyapatite and Behaviour After Thermal Ageing

  • Chapter
  • First Online:
Built Heritage: Monitoring Conservation Management

Part of the book series: Research for Development ((REDE))

Abstract

In this study, the use of hydroxyapatite (HAP), recently proposed for limestone consolidation, was investigated on unweathered and artificially weathered Carrara marble and the behaviour of HAP-treated samples towards thermal weathering was evaluated, by means of an accelerated thermal weathering test. The results of the study indicate that HAP is a very promising consolidant for marble, able to significantly improve mechanical properties without substantially altering pore size distribution and to provide some mitigation against thermal weathering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Accardo, G., Cassano, R., Rossi-Doria, P., Sammuri, P., & Tabasso, M. (1981). Screening of products and methods for consolidation of marble, In Rossi-Manaresi, R. (Ed), The conservation of stone II: Preprints of the contribution to the international symposium, pp. 721–735. Bologna 27–30 October 1981.

    Google Scholar 

  • Amoroso, G. G., & Fassina, V. (1983). Stone decay and conservation. New York: Elsevier.

    Google Scholar 

  • Charola, A. E., Centeno, S. A., & Normandin, K. (2010). The New York public library: Protective treatment for sugaring marble. Journal of Architectural Conservation, 16, 29–44.

    Article  Google Scholar 

  • Fassina, V., Favaro, M., & Naccari, A. (2002). Principal decay patterns on Venetian monuments. In S. Siegesmund, T., Weiss, & Vollbrecht, A. (Eds.) Natural stone, weathering phenomena, conservation strategies and case studies (Vol. 205, pp. 381–391). London: Geological Society, London, Special Publications.

    Google Scholar 

  • Franzoni, E., & Sassoni, E. (2011). Correlation between microstructural characteristics and weight loss of natural stones exposed to simulated acid rain. Science of the Total Environment, 412–413, 278–285.

    Article  Google Scholar 

  • Franzoni, E., Sassoni, E., Scherer, G. W., & Naidu, S. (2013). Artificial weathering of stone by heating. Journal of Cultural Heritage, 14S, e85–e93.

    Article  Google Scholar 

  • Hoepfner, T. P., & Case, E. D. (2004). An estimate of the critical grain size for microcracks induced in hydroxyapatite by thermal expansion anisotropy. Materials Letters, 58, 489–492.

    Article  Google Scholar 

  • Leroux, L., Vergès-Belmin, V., Costa, D., Delgado-Rodrigues, J., Tiano, P., Snethlage, R., Singer, B., Massey, S., & De Witte, E. (2000). Measuring the penetration depth of consolidating products: Comparison of six methods. In V. Fassina (Ed), Proceedings of 9th International Congress on Deterioration and Conservation of Stone, (pp. 361–369). June 19–24, 2000, Venice (Italy).

    Google Scholar 

  • Liu, Q., & Zhang, B. (2011). Synthesis and characterization of a novel biomaterial for the conservation of historic stone building and sculptures. Materials Science Forum, 675–677, 317–320.

    Article  Google Scholar 

  • Luque, A., Cultrone, G., Mosch, S., Siegesmund, S., Sebastian, E., & Leiss, B. (2010). Anisotropic behaviour of White Macael marble used in the Alhambra of Granada (Spain): The role of thermohydric expansion in stone durability. Engineering Geology, 115, 209–216.

    Google Scholar 

  • Malaga-Starzec, K., Åkesson, U., Lindqvist, J. E., & Schouenborg, B. (2006). Microscopic and macroscopic characterization of the porosity of marble as a function of temperature and impregnation. Construction and Building Materials, 20, 939–947.

    Article  Google Scholar 

  • Maravelaki-Kalaitzaki, P. (2005). Black crusts and patinas on Pentelic marble from the Parthenon and Erecteum (Acropoli, Athens): Characterization and origin. Analytica Chimica Acta, 532, 187–198.

    Article  Google Scholar 

  • Matteini, M., Rescic, S., Fratini, F., & Botticelli, G. (2011). Ammonium phosphates as consolidating agents for carbonatic stone materials used in architecture and cultural heritage: Preliminary research. International Journal of Architectural Heritage, 5, 717–736.

    Article  Google Scholar 

  • Naidu, S., & Scherer G. W. (2012). Development of hydroxyapatite films to reduce the dissolution rate of marble, In Proceedings of 12th International Congress on Deterioration and Conservation of Stone, New York City (USA), October 22–26, 2012 (in press).

    Google Scholar 

  • Naidu, S., Sassoni, E., & Scherer, G. W. (2011). New treatment for corrosion-resistant coatings for marble and consolidation of limestone. In Proceedings ofJardins de Pierres—Conservation of stone in Parks, Gardens and Cemeteries”, Paris (F), pp. 289–294. June 22–24, 2011.

    Google Scholar 

  • Pamplona, M., et al. (2012). Ultrasonic pulse velocity: A tool for the condition assessment of outdoor marble sculptures. In Proceedings of 12th International Congress on Deterioration and Conservation of Stone, New York City (USA). October 22–26, 2012 (in press).

    Google Scholar 

  • Royer-Carfagni, G. (1999). Some considerations on the warping of marble façades: The example of Alvar Aalto’s Finland Hall in Helsinki. Construction and Building Materials, 13, 449–457.

    Article  Google Scholar 

  • Ruedrich, J., Weiss, T., & Siegesmund, S. (2002). Thermal behavior of weathered and consolidated marbles. In S. Siegesmund, T. Weiss, & A. Vollbrecht (Eds.) Natural stone, weathering phenomena, conservation strategies and case studies, (Vol. 205, pp. 255–271). London: Geological Society, London, Special Publications.

    Google Scholar 

  • Sassoni, E., & Franzoni, E. (2014). Influence of porosity on artificial deterioration of marble and limestone by heating. Applied Physics A-Mater, 115, 809–816.

    Google Scholar 

  • Sassoni, E., Naidu, S., & Scherer, G. W. (2011). The use of hydroxyapatite as a new inorganic consolidant for damaged carbonate stones. Journal of Cultural Heritage, 12, 346–355.

    Article  Google Scholar 

  • Sassoni, E., Franzoni, E., Pigino, B., Scherer, G. W., & Naidu, S. (2013). Consolidation of calcareous and siliceous sandstones by hydroxyapatite: Comparison with a TEOS-based consolidant. Journal of Cultural Heritage, 14S, e103–e108.

    Article  Google Scholar 

  • Siegesmund, S., Ullemeyer, K., Weiss, T., & Tschegg, E. K. (2000). Physical weathering of marbles caused by anisotropic thermal expansion. International Journal of Earth Sciences, 89, 170–182.

    Article  Google Scholar 

  • Siegesmund, S., Ruedrich, J., & Koch, A. (2008). Marble bowing: Comparative studies of three different public building facades. Environmental Geology, 56, 473–494.

    Article  Google Scholar 

  • Verges-Belmin V., Orial G., Garnier D., Bouineau A., Coignard R., 1992, Impregnation of badly decayed Carrara marble by consolidating agents: Comparison of seven treatments, In: La conservation des monuments dans le bassin metiterraneen: Actes du 2° symposium international, Geneve, November 19–21, 1991.

    Google Scholar 

  • Weiss, T., Rasolofosaon, P. N. J., & Siegesmund, S. (2002). Ultrasonic wave velocities as a diagnostic tool for the quality assessment of marble. In S. Siegesmund, T. Weiss, & A. Vollbrecht (Eds.) Natural stone, weathering phenomena, conservation strategies and case studies, (Vol. 205, pp. 149–164). London: Geological Society, London, Special Publications.

    Google Scholar 

  • Wheeler, G. S. (2005). Alkoxysilanes and the Consolidation of Stone (Research in conservation). Los Angeles: The Getty Conservation Institute.

    Google Scholar 

  • Wheeler, G. S., Fleming, S. A., Ebersole, S. (1992). Evaluation of some current treatments for marble. In La conservation des monuments dans le bassin mediterraneen: Actes du 2° symposium international, 439–443. Geneve, 19–21/11/1991.

    Google Scholar 

  • Yang, F., Zhang, B., Liu, Y., Guofeng, W., Zhang, H., Cheng, W., et al. (2011). Biomimic conservation of weathered calcareous stones by apatite. New Journal of Chemistry, 35, 887–892.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Sassoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sassoni, E., Franzoni, E. (2015). Consolidation of Carrara Marble by Hydroxyapatite and Behaviour After Thermal Ageing. In: Toniolo, L., Boriani, M., Guidi, G. (eds) Built Heritage: Monitoring Conservation Management. Research for Development. Springer, Cham. https://doi.org/10.1007/978-3-319-08533-3_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08533-3_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08532-6

  • Online ISBN: 978-3-319-08533-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics